Mercurial > dropbear
diff src/ciphers/noekeon.c @ 192:9cc34777b479 libtomcrypt
propagate from branch 'au.asn.ucc.matt.ltc-orig' (head 9ba8f01f44320e9cb9f19881105ae84f84a43ea9)
to branch 'au.asn.ucc.matt.dropbear.ltc' (head dbf51c569bc34956ad948e4cc87a0eeb2170b768)
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sun, 08 May 2005 06:36:47 +0000 |
parents | 1c15b283127b |
children | 39d5d58461d6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ciphers/noekeon.c Sun May 08 06:36:47 2005 +0000 @@ -0,0 +1,292 @@ +/* LibTomCrypt, modular cryptographic library -- Tom St Denis + * + * LibTomCrypt is a library that provides various cryptographic + * algorithms in a highly modular and flexible manner. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://libtomcrypt.org + */ +/** + @file noekeon.c + Implementation of the Noekeon block cipher by Tom St Denis +*/ +#include "tomcrypt.h" + +#ifdef NOEKEON + +const struct ltc_cipher_descriptor noekeon_desc = +{ + "noekeon", + 16, + 16, 16, 16, 16, + &noekeon_setup, + &noekeon_ecb_encrypt, + &noekeon_ecb_decrypt, + &noekeon_test, + &noekeon_done, + &noekeon_keysize, + NULL, NULL, NULL, NULL, NULL, NULL, NULL +}; + +static const ulong32 RC[] = { + 0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL, + 0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL, + 0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL, + 0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL, + 0x000000d4UL +}; + +#define kTHETA(a, b, c, d) \ + temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ + b ^= temp; d ^= temp; \ + temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ + a ^= temp; c ^= temp; + +#define THETA(k, a, b, c, d) \ + temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ + b ^= temp ^ k[1]; d ^= temp ^ k[3]; \ + temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ + a ^= temp ^ k[0]; c ^= temp ^ k[2]; + +#define GAMMA(a, b, c, d) \ + b ^= ~(d|c); \ + a ^= c&b; \ + temp = d; d = a; a = temp;\ + c ^= a ^ b ^ d; \ + b ^= ~(d|c); \ + a ^= c&b; + +#define PI1(a, b, c, d) \ + a = ROLc(a, 1); c = ROLc(c, 5); d = ROLc(d, 2); + +#define PI2(a, b, c, d) \ + a = RORc(a, 1); c = RORc(c, 5); d = RORc(d, 2); + + /** + Initialize the Noekeon block cipher + @param key The symmetric key you wish to pass + @param keylen The key length in bytes + @param num_rounds The number of rounds desired (0 for default) + @param skey The key in as scheduled by this function. + @return CRYPT_OK if successful + */ +int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) +{ + ulong32 temp; + + LTC_ARGCHK(key != NULL); + LTC_ARGCHK(skey != NULL); + + if (keylen != 16) { + return CRYPT_INVALID_KEYSIZE; + } + + if (num_rounds != 16 && num_rounds != 0) { + return CRYPT_INVALID_ROUNDS; + } + + LOAD32H(skey->noekeon.K[0],&key[0]); + LOAD32H(skey->noekeon.K[1],&key[4]); + LOAD32H(skey->noekeon.K[2],&key[8]); + LOAD32H(skey->noekeon.K[3],&key[12]); + + LOAD32H(skey->noekeon.dK[0],&key[0]); + LOAD32H(skey->noekeon.dK[1],&key[4]); + LOAD32H(skey->noekeon.dK[2],&key[8]); + LOAD32H(skey->noekeon.dK[3],&key[12]); + + kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]); + + return CRYPT_OK; +} + +/** + Encrypts a block of text with Noekeon + @param pt The input plaintext (16 bytes) + @param ct The output ciphertext (16 bytes) + @param skey The key as scheduled +*/ +#ifdef LTC_CLEAN_STACK +static void _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) +#else +void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) +#endif +{ + ulong32 a,b,c,d,temp; + int r; + + LTC_ARGCHK(skey != NULL); + LTC_ARGCHK(pt != NULL); + LTC_ARGCHK(ct != NULL); + + LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]); + LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]); + +#define ROUND(i) \ + a ^= RC[i]; \ + THETA(skey->noekeon.K, a,b,c,d); \ + PI1(a,b,c,d); \ + GAMMA(a,b,c,d); \ + PI2(a,b,c,d); + + for (r = 0; r < 16; ++r) { + ROUND(r); + } + +#undef ROUND + + a ^= RC[16]; + THETA(skey->noekeon.K, a, b, c, d); + + STORE32H(a,&ct[0]); STORE32H(b,&ct[4]); + STORE32H(c,&ct[8]); STORE32H(d,&ct[12]); +} + +#ifdef LTC_CLEAN_STACK +void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) +{ + _noekeon_ecb_encrypt(pt, ct, skey); + burn_stack(sizeof(ulong32) * 5 + sizeof(int)); +} +#endif + +/** + Decrypts a block of text with Noekeon + @param ct The input ciphertext (16 bytes) + @param pt The output plaintext (16 bytes) + @param skey The key as scheduled +*/ +#ifdef LTC_CLEAN_STACK +static void _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) +#else +void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) +#endif +{ + ulong32 a,b,c,d, temp; + int r; + + LTC_ARGCHK(skey != NULL); + LTC_ARGCHK(pt != NULL); + LTC_ARGCHK(ct != NULL); + + LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]); + LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]); + + +#define ROUND(i) \ + THETA(skey->noekeon.dK, a,b,c,d); \ + a ^= RC[i]; \ + PI1(a,b,c,d); \ + GAMMA(a,b,c,d); \ + PI2(a,b,c,d); + + for (r = 16; r > 0; --r) { + ROUND(r); + } + +#undef ROUND + + THETA(skey->noekeon.dK, a,b,c,d); + a ^= RC[0]; + STORE32H(a,&pt[0]); STORE32H(b, &pt[4]); + STORE32H(c,&pt[8]); STORE32H(d, &pt[12]); +} + +#ifdef LTC_CLEAN_STACK +void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) +{ + _noekeon_ecb_decrypt(ct, pt, skey); + burn_stack(sizeof(ulong32) * 5 + sizeof(int)); +} +#endif + +/** + Performs a self-test of the Noekeon block cipher + @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled +*/ +int noekeon_test(void) +{ + #ifndef LTC_TEST + return CRYPT_NOP; + #else + static const struct { + int keylen; + unsigned char key[16], pt[16], ct[16]; + } tests[] = { + { + 16, + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, + { 0x18, 0xa6, 0xec, 0xe5, 0x28, 0xaa, 0x79, 0x73, + 0x28, 0xb2, 0xc0, 0x91, 0xa0, 0x2f, 0x54, 0xc5} + } + }; + symmetric_key key; + unsigned char tmp[2][16]; + int err, i, y; + + for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { + zeromem(&key, sizeof(key)); + if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { + return err; + } + + noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key); + noekeon_ecb_decrypt(tmp[0], tmp[1], &key); + if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) { +#if 0 + printf("\n\nTest %d failed\n", i); + if (memcmp(tmp[0], tests[i].ct, 16)) { + printf("CT: "); + for (i = 0; i < 16; i++) { + printf("%02x ", tmp[0][i]); + } + printf("\n"); + } else { + printf("PT: "); + for (i = 0; i < 16; i++) { + printf("%02x ", tmp[1][i]); + } + printf("\n"); + } +#endif + return CRYPT_FAIL_TESTVECTOR; + } + + /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ + for (y = 0; y < 16; y++) tmp[0][y] = 0; + for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key); + for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key); + for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; + } + return CRYPT_OK; + #endif +} + +/** Terminate the context + @param skey The scheduled key +*/ +void noekeon_done(symmetric_key *skey) +{ +} + +/** + Gets suitable key size + @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. + @return CRYPT_OK if the input key size is acceptable. +*/ +int noekeon_keysize(int *keysize) +{ + LTC_ARGCHK(keysize != NULL); + if (*keysize < 16) { + return CRYPT_INVALID_KEYSIZE; + } else { + *keysize = 16; + return CRYPT_OK; + } +} + +#endif +