diff src/ciphers/noekeon.c @ 192:9cc34777b479 libtomcrypt

propagate from branch 'au.asn.ucc.matt.ltc-orig' (head 9ba8f01f44320e9cb9f19881105ae84f84a43ea9) to branch 'au.asn.ucc.matt.dropbear.ltc' (head dbf51c569bc34956ad948e4cc87a0eeb2170b768)
author Matt Johnston <matt@ucc.asn.au>
date Sun, 08 May 2005 06:36:47 +0000
parents 1c15b283127b
children 39d5d58461d6
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ciphers/noekeon.c	Sun May 08 06:36:47 2005 +0000
@@ -0,0 +1,292 @@
+/* LibTomCrypt, modular cryptographic library -- Tom St Denis
+ *
+ * LibTomCrypt is a library that provides various cryptographic
+ * algorithms in a highly modular and flexible manner.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, [email protected], http://libtomcrypt.org
+ */
+/**
+   @file noekeon.c
+   Implementation of the Noekeon block cipher by Tom St Denis 
+*/
+#include "tomcrypt.h"
+
+#ifdef NOEKEON
+
+const struct ltc_cipher_descriptor noekeon_desc =
+{
+    "noekeon",
+    16,
+    16, 16, 16, 16,
+    &noekeon_setup,
+    &noekeon_ecb_encrypt,
+    &noekeon_ecb_decrypt,
+    &noekeon_test,
+    &noekeon_done,
+    &noekeon_keysize,
+    NULL, NULL, NULL, NULL, NULL, NULL, NULL
+};
+
+static const ulong32 RC[] = {
+   0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL,
+   0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL,
+   0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL,
+   0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL,
+   0x000000d4UL 
+};
+
+#define kTHETA(a, b, c, d)                                 \
+    temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
+    b ^= temp; d ^= temp;                                  \
+    temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
+    a ^= temp; c ^= temp;
+
+#define THETA(k, a, b, c, d)                               \
+    temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
+    b ^= temp ^ k[1]; d ^= temp ^ k[3];                    \
+    temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \
+    a ^= temp ^ k[0]; c ^= temp ^ k[2];
+    
+#define GAMMA(a, b, c, d)     \
+    b ^= ~(d|c);              \
+    a ^= c&b;                 \
+    temp = d; d = a; a = temp;\
+    c ^= a ^ b ^ d;           \
+    b ^= ~(d|c);              \
+    a ^= c&b;
+    
+#define PI1(a, b, c, d) \
+    a = ROLc(a, 1); c = ROLc(c, 5); d = ROLc(d, 2);
+    
+#define PI2(a, b, c, d) \
+    a = RORc(a, 1); c = RORc(c, 5); d = RORc(d, 2);
+    
+ /**
+    Initialize the Noekeon block cipher
+    @param key The symmetric key you wish to pass
+    @param keylen The key length in bytes
+    @param num_rounds The number of rounds desired (0 for default)
+    @param skey The key in as scheduled by this function.
+    @return CRYPT_OK if successful
+ */
+int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
+{
+   ulong32 temp;
+   
+   LTC_ARGCHK(key != NULL);
+   LTC_ARGCHK(skey != NULL);
+   
+   if (keylen != 16) {
+      return CRYPT_INVALID_KEYSIZE;
+   }
+   
+   if (num_rounds != 16 && num_rounds != 0) {
+      return CRYPT_INVALID_ROUNDS;
+   }
+   
+   LOAD32H(skey->noekeon.K[0],&key[0]);
+   LOAD32H(skey->noekeon.K[1],&key[4]);
+   LOAD32H(skey->noekeon.K[2],&key[8]);
+   LOAD32H(skey->noekeon.K[3],&key[12]);
+   
+   LOAD32H(skey->noekeon.dK[0],&key[0]);
+   LOAD32H(skey->noekeon.dK[1],&key[4]);
+   LOAD32H(skey->noekeon.dK[2],&key[8]);
+   LOAD32H(skey->noekeon.dK[3],&key[12]);
+
+   kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]);
+
+   return CRYPT_OK;
+}
+
+/**
+  Encrypts a block of text with Noekeon
+  @param pt The input plaintext (16 bytes)
+  @param ct The output ciphertext (16 bytes)
+  @param skey The key as scheduled
+*/
+#ifdef LTC_CLEAN_STACK
+static void _noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+#else
+void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+#endif
+{
+   ulong32 a,b,c,d,temp;
+   int r;
+
+   LTC_ARGCHK(skey != NULL);
+   LTC_ARGCHK(pt   != NULL);
+   LTC_ARGCHK(ct   != NULL);
+   
+   LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]);
+   LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]);
+   
+#define ROUND(i) \
+       a ^= RC[i]; \
+       THETA(skey->noekeon.K, a,b,c,d); \
+       PI1(a,b,c,d); \
+       GAMMA(a,b,c,d); \
+       PI2(a,b,c,d);
+
+   for (r = 0; r < 16; ++r) {
+       ROUND(r);
+   }
+
+#undef ROUND
+
+   a ^= RC[16];
+   THETA(skey->noekeon.K, a, b, c, d);
+   
+   STORE32H(a,&ct[0]); STORE32H(b,&ct[4]);
+   STORE32H(c,&ct[8]); STORE32H(d,&ct[12]);
+}
+
+#ifdef LTC_CLEAN_STACK
+void noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey)
+{
+   _noekeon_ecb_encrypt(pt, ct, skey);
+   burn_stack(sizeof(ulong32) * 5 + sizeof(int));
+}
+#endif
+
+/**
+  Decrypts a block of text with Noekeon
+  @param ct The input ciphertext (16 bytes)
+  @param pt The output plaintext (16 bytes)
+  @param skey The key as scheduled 
+*/
+#ifdef LTC_CLEAN_STACK
+static void _noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+#else
+void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+#endif
+{
+   ulong32 a,b,c,d, temp;
+   int r;
+
+   LTC_ARGCHK(skey != NULL);
+   LTC_ARGCHK(pt   != NULL);
+   LTC_ARGCHK(ct   != NULL);
+   
+   LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]);
+   LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]);
+   
+
+#define ROUND(i) \
+       THETA(skey->noekeon.dK, a,b,c,d); \
+       a ^= RC[i]; \
+       PI1(a,b,c,d); \
+       GAMMA(a,b,c,d); \
+       PI2(a,b,c,d); 
+
+   for (r = 16; r > 0; --r) {
+       ROUND(r);
+   }
+
+#undef ROUND
+
+   THETA(skey->noekeon.dK, a,b,c,d);
+   a ^= RC[0];
+   STORE32H(a,&pt[0]); STORE32H(b, &pt[4]);
+   STORE32H(c,&pt[8]); STORE32H(d, &pt[12]);
+}
+
+#ifdef LTC_CLEAN_STACK
+void noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey)
+{
+   _noekeon_ecb_decrypt(ct, pt, skey);
+   burn_stack(sizeof(ulong32) * 5 + sizeof(int));
+}
+#endif
+
+/**
+  Performs a self-test of the Noekeon block cipher
+  @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
+*/
+int noekeon_test(void)
+{
+ #ifndef LTC_TEST
+    return CRYPT_NOP;
+ #else
+ static const struct {
+     int keylen;
+     unsigned char key[16], pt[16], ct[16];
+ } tests[] = {
+   {
+      16,
+      { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
+      { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
+      { 0x18, 0xa6, 0xec, 0xe5, 0x28, 0xaa, 0x79, 0x73,
+        0x28, 0xb2, 0xc0, 0x91, 0xa0, 0x2f, 0x54, 0xc5}
+   }
+ };
+ symmetric_key key;
+ unsigned char tmp[2][16];
+ int err, i, y;
+ 
+ for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
+    zeromem(&key, sizeof(key));
+    if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { 
+       return err;
+    }
+  
+    noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key);
+    noekeon_ecb_decrypt(tmp[0], tmp[1], &key);
+    if (memcmp(tmp[0], tests[i].ct, 16) || memcmp(tmp[1], tests[i].pt, 16)) { 
+#if 0
+       printf("\n\nTest %d failed\n", i);
+       if (memcmp(tmp[0], tests[i].ct, 16)) {
+          printf("CT: ");
+          for (i = 0; i < 16; i++) {
+             printf("%02x ", tmp[0][i]);
+          }
+          printf("\n");
+       } else {
+          printf("PT: ");
+          for (i = 0; i < 16; i++) {
+             printf("%02x ", tmp[1][i]);
+          }
+          printf("\n");
+       }
+#endif       
+        return CRYPT_FAIL_TESTVECTOR;
+    }
+
+      /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
+      for (y = 0; y < 16; y++) tmp[0][y] = 0;
+      for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key);
+      for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key);
+      for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
+ }       
+ return CRYPT_OK;
+ #endif
+}
+
+/** Terminate the context 
+   @param skey    The scheduled key
+*/
+void noekeon_done(symmetric_key *skey)
+{
+}
+
+/**
+  Gets suitable key size
+  @param keysize [in/out] The length of the recommended key (in bytes).  This function will store the suitable size back in this variable.
+  @return CRYPT_OK if the input key size is acceptable.
+*/
+int noekeon_keysize(int *keysize)
+{
+   LTC_ARGCHK(keysize != NULL);
+   if (*keysize < 16) {
+      return CRYPT_INVALID_KEYSIZE;
+   } else {
+      *keysize = 16;
+      return CRYPT_OK;
+   }
+}
+
+#endif
+