Mercurial > dropbear
comparison bn_mp_exptmod_fast.c @ 2:86e0b50a9b58 libtommath-orig ltm-0.30-orig
ltm 0.30 orig import
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Mon, 31 May 2004 18:25:22 +0000 |
parents | |
children | d29b64170cf0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 2:86e0b50a9b58 |
---|---|
1 /* LibTomMath, multiple-precision integer library -- Tom St Denis | |
2 * | |
3 * LibTomMath is a library that provides multiple-precision | |
4 * integer arithmetic as well as number theoretic functionality. | |
5 * | |
6 * The library was designed directly after the MPI library by | |
7 * Michael Fromberger but has been written from scratch with | |
8 * additional optimizations in place. | |
9 * | |
10 * The library is free for all purposes without any express | |
11 * guarantee it works. | |
12 * | |
13 * Tom St Denis, [email protected], http://math.libtomcrypt.org | |
14 */ | |
15 #include <tommath.h> | |
16 | |
17 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 | |
18 * | |
19 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. | |
20 * The value of k changes based on the size of the exponent. | |
21 * | |
22 * Uses Montgomery or Diminished Radix reduction [whichever appropriate] | |
23 */ | |
24 | |
25 #ifdef MP_LOW_MEM | |
26 #define TAB_SIZE 32 | |
27 #else | |
28 #define TAB_SIZE 256 | |
29 #endif | |
30 | |
31 int | |
32 mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) | |
33 { | |
34 mp_int M[TAB_SIZE], res; | |
35 mp_digit buf, mp; | |
36 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; | |
37 | |
38 /* use a pointer to the reduction algorithm. This allows us to use | |
39 * one of many reduction algorithms without modding the guts of | |
40 * the code with if statements everywhere. | |
41 */ | |
42 int (*redux)(mp_int*,mp_int*,mp_digit); | |
43 | |
44 /* find window size */ | |
45 x = mp_count_bits (X); | |
46 if (x <= 7) { | |
47 winsize = 2; | |
48 } else if (x <= 36) { | |
49 winsize = 3; | |
50 } else if (x <= 140) { | |
51 winsize = 4; | |
52 } else if (x <= 450) { | |
53 winsize = 5; | |
54 } else if (x <= 1303) { | |
55 winsize = 6; | |
56 } else if (x <= 3529) { | |
57 winsize = 7; | |
58 } else { | |
59 winsize = 8; | |
60 } | |
61 | |
62 #ifdef MP_LOW_MEM | |
63 if (winsize > 5) { | |
64 winsize = 5; | |
65 } | |
66 #endif | |
67 | |
68 /* init M array */ | |
69 /* init first cell */ | |
70 if ((err = mp_init(&M[1])) != MP_OKAY) { | |
71 return err; | |
72 } | |
73 | |
74 /* now init the second half of the array */ | |
75 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | |
76 if ((err = mp_init(&M[x])) != MP_OKAY) { | |
77 for (y = 1<<(winsize-1); y < x; y++) { | |
78 mp_clear (&M[y]); | |
79 } | |
80 mp_clear(&M[1]); | |
81 return err; | |
82 } | |
83 } | |
84 | |
85 /* determine and setup reduction code */ | |
86 if (redmode == 0) { | |
87 /* now setup montgomery */ | |
88 if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { | |
89 goto __M; | |
90 } | |
91 | |
92 /* automatically pick the comba one if available (saves quite a few calls/ifs) */ | |
93 if (((P->used * 2 + 1) < MP_WARRAY) && | |
94 P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | |
95 redux = fast_mp_montgomery_reduce; | |
96 } else { | |
97 /* use slower baseline Montgomery method */ | |
98 redux = mp_montgomery_reduce; | |
99 } | |
100 } else if (redmode == 1) { | |
101 /* setup DR reduction for moduli of the form B**k - b */ | |
102 mp_dr_setup(P, &mp); | |
103 redux = mp_dr_reduce; | |
104 } else { | |
105 /* setup DR reduction for moduli of the form 2**k - b */ | |
106 if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { | |
107 goto __M; | |
108 } | |
109 redux = mp_reduce_2k; | |
110 } | |
111 | |
112 /* setup result */ | |
113 if ((err = mp_init (&res)) != MP_OKAY) { | |
114 goto __M; | |
115 } | |
116 | |
117 /* create M table | |
118 * | |
119 * The M table contains powers of the input base, e.g. M[x] = G^x mod P | |
120 * | |
121 * The first half of the table is not computed though accept for M[0] and M[1] | |
122 */ | |
123 | |
124 if (redmode == 0) { | |
125 /* now we need R mod m */ | |
126 if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { | |
127 goto __RES; | |
128 } | |
129 | |
130 /* now set M[1] to G * R mod m */ | |
131 if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { | |
132 goto __RES; | |
133 } | |
134 } else { | |
135 mp_set(&res, 1); | |
136 if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { | |
137 goto __RES; | |
138 } | |
139 } | |
140 | |
141 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ | |
142 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { | |
143 goto __RES; | |
144 } | |
145 | |
146 for (x = 0; x < (winsize - 1); x++) { | |
147 if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { | |
148 goto __RES; | |
149 } | |
150 if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { | |
151 goto __RES; | |
152 } | |
153 } | |
154 | |
155 /* create upper table */ | |
156 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { | |
157 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { | |
158 goto __RES; | |
159 } | |
160 if ((err = redux (&M[x], P, mp)) != MP_OKAY) { | |
161 goto __RES; | |
162 } | |
163 } | |
164 | |
165 /* set initial mode and bit cnt */ | |
166 mode = 0; | |
167 bitcnt = 1; | |
168 buf = 0; | |
169 digidx = X->used - 1; | |
170 bitcpy = 0; | |
171 bitbuf = 0; | |
172 | |
173 for (;;) { | |
174 /* grab next digit as required */ | |
175 if (--bitcnt == 0) { | |
176 /* if digidx == -1 we are out of digits so break */ | |
177 if (digidx == -1) { | |
178 break; | |
179 } | |
180 /* read next digit and reset bitcnt */ | |
181 buf = X->dp[digidx--]; | |
182 bitcnt = (int)DIGIT_BIT; | |
183 } | |
184 | |
185 /* grab the next msb from the exponent */ | |
186 y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; | |
187 buf <<= (mp_digit)1; | |
188 | |
189 /* if the bit is zero and mode == 0 then we ignore it | |
190 * These represent the leading zero bits before the first 1 bit | |
191 * in the exponent. Technically this opt is not required but it | |
192 * does lower the # of trivial squaring/reductions used | |
193 */ | |
194 if (mode == 0 && y == 0) { | |
195 continue; | |
196 } | |
197 | |
198 /* if the bit is zero and mode == 1 then we square */ | |
199 if (mode == 1 && y == 0) { | |
200 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | |
201 goto __RES; | |
202 } | |
203 if ((err = redux (&res, P, mp)) != MP_OKAY) { | |
204 goto __RES; | |
205 } | |
206 continue; | |
207 } | |
208 | |
209 /* else we add it to the window */ | |
210 bitbuf |= (y << (winsize - ++bitcpy)); | |
211 mode = 2; | |
212 | |
213 if (bitcpy == winsize) { | |
214 /* ok window is filled so square as required and multiply */ | |
215 /* square first */ | |
216 for (x = 0; x < winsize; x++) { | |
217 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | |
218 goto __RES; | |
219 } | |
220 if ((err = redux (&res, P, mp)) != MP_OKAY) { | |
221 goto __RES; | |
222 } | |
223 } | |
224 | |
225 /* then multiply */ | |
226 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { | |
227 goto __RES; | |
228 } | |
229 if ((err = redux (&res, P, mp)) != MP_OKAY) { | |
230 goto __RES; | |
231 } | |
232 | |
233 /* empty window and reset */ | |
234 bitcpy = 0; | |
235 bitbuf = 0; | |
236 mode = 1; | |
237 } | |
238 } | |
239 | |
240 /* if bits remain then square/multiply */ | |
241 if (mode == 2 && bitcpy > 0) { | |
242 /* square then multiply if the bit is set */ | |
243 for (x = 0; x < bitcpy; x++) { | |
244 if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | |
245 goto __RES; | |
246 } | |
247 if ((err = redux (&res, P, mp)) != MP_OKAY) { | |
248 goto __RES; | |
249 } | |
250 | |
251 /* get next bit of the window */ | |
252 bitbuf <<= 1; | |
253 if ((bitbuf & (1 << winsize)) != 0) { | |
254 /* then multiply */ | |
255 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { | |
256 goto __RES; | |
257 } | |
258 if ((err = redux (&res, P, mp)) != MP_OKAY) { | |
259 goto __RES; | |
260 } | |
261 } | |
262 } | |
263 } | |
264 | |
265 if (redmode == 0) { | |
266 /* fixup result if Montgomery reduction is used | |
267 * recall that any value in a Montgomery system is | |
268 * actually multiplied by R mod n. So we have | |
269 * to reduce one more time to cancel out the factor | |
270 * of R. | |
271 */ | |
272 if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) { | |
273 goto __RES; | |
274 } | |
275 } | |
276 | |
277 /* swap res with Y */ | |
278 mp_exch (&res, Y); | |
279 err = MP_OKAY; | |
280 __RES:mp_clear (&res); | |
281 __M: | |
282 mp_clear(&M[1]); | |
283 for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | |
284 mp_clear (&M[x]); | |
285 } | |
286 return err; | |
287 } |