Mercurial > dropbear
diff bn_mp_exptmod.c @ 282:91fbc376f010 libtommath-orig libtommath-0.35
Import of libtommath 0.35
From ltm-0.35.tar.bz2 SHA1 of 3f193dbae9351e92d02530994fa18236f7fde01c
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Wed, 08 Mar 2006 13:16:18 +0000 |
parents | |
children | 97db060d0ef5 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/bn_mp_exptmod.c Wed Mar 08 13:16:18 2006 +0000 @@ -0,0 +1,108 @@ +#include <tommath.h> +#ifdef BN_MP_EXPTMOD_C +/* LibTomMath, multiple-precision integer library -- Tom St Denis + * + * LibTomMath is a library that provides multiple-precision + * integer arithmetic as well as number theoretic functionality. + * + * The library was designed directly after the MPI library by + * Michael Fromberger but has been written from scratch with + * additional optimizations in place. + * + * The library is free for all purposes without any express + * guarantee it works. + * + * Tom St Denis, [email protected], http://math.libtomcrypt.org + */ + + +/* this is a shell function that calls either the normal or Montgomery + * exptmod functions. Originally the call to the montgomery code was + * embedded in the normal function but that wasted alot of stack space + * for nothing (since 99% of the time the Montgomery code would be called) + */ +int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) +{ + int dr; + + /* modulus P must be positive */ + if (P->sign == MP_NEG) { + return MP_VAL; + } + + /* if exponent X is negative we have to recurse */ + if (X->sign == MP_NEG) { +#ifdef BN_MP_INVMOD_C + mp_int tmpG, tmpX; + int err; + + /* first compute 1/G mod P */ + if ((err = mp_init(&tmpG)) != MP_OKAY) { + return err; + } + if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { + mp_clear(&tmpG); + return err; + } + + /* now get |X| */ + if ((err = mp_init(&tmpX)) != MP_OKAY) { + mp_clear(&tmpG); + return err; + } + if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { + mp_clear_multi(&tmpG, &tmpX, NULL); + return err; + } + + /* and now compute (1/G)**|X| instead of G**X [X < 0] */ + err = mp_exptmod(&tmpG, &tmpX, P, Y); + mp_clear_multi(&tmpG, &tmpX, NULL); + return err; +#else + /* no invmod */ + return MP_VAL; +#endif + } + +/* modified diminished radix reduction */ +#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) + if (mp_reduce_is_2k_l(P) == MP_YES) { + return s_mp_exptmod(G, X, P, Y, 1); + } +#endif + +#ifdef BN_MP_DR_IS_MODULUS_C + /* is it a DR modulus? */ + dr = mp_dr_is_modulus(P); +#else + /* default to no */ + dr = 0; +#endif + +#ifdef BN_MP_REDUCE_IS_2K_C + /* if not, is it a unrestricted DR modulus? */ + if (dr == 0) { + dr = mp_reduce_is_2k(P) << 1; + } +#endif + + /* if the modulus is odd or dr != 0 use the montgomery method */ +#ifdef BN_MP_EXPTMOD_FAST_C + if (mp_isodd (P) == 1 || dr != 0) { + return mp_exptmod_fast (G, X, P, Y, dr); + } else { +#endif +#ifdef BN_S_MP_EXPTMOD_C + /* otherwise use the generic Barrett reduction technique */ + return s_mp_exptmod (G, X, P, Y, 0); +#else + /* no exptmod for evens */ + return MP_VAL; +#endif +#ifdef BN_MP_EXPTMOD_FAST_C + } +#endif +} + +#endif