Mercurial > dropbear
view libtommath/bn_s_mp_invmod_fast.c @ 1715:3974f087d9c0
Disallow leading lines before the ident for server (#102)
Per RFC4253 4.2 clients must be able to process other lines of data
before the version string, server behavior is not defined neither
with MUST/SHOULD nor with MAY.
If server process up to 50 lines too - it may cause too long hanging
session with invalid/evil client that consume host resources and
potentially may lead to DDoS on poor embedded boxes.
Let's require first line from client to be version string and fail
early if it's not - matches both RFC and real OpenSSH behavior.
author | Vladislav Grishenko <themiron@users.noreply.github.com> |
---|---|
date | Mon, 15 Jun 2020 18:22:18 +0500 |
parents | 1051e4eea25a |
children |
line wrap: on
line source
#include "tommath_private.h" #ifdef BN_S_MP_INVMOD_FAST_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* computes the modular inverse via binary extended euclidean algorithm, * that is c = 1/a mod b * * Based on slow invmod except this is optimized for the case where b is * odd as per HAC Note 14.64 on pp. 610 */ mp_err s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c) { mp_int x, y, u, v, B, D; mp_sign neg; mp_err err; /* 2. [modified] b must be odd */ if (MP_IS_EVEN(b)) { return MP_VAL; } /* init all our temps */ if ((err = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { return err; } /* x == modulus, y == value to invert */ if ((err = mp_copy(b, &x)) != MP_OKAY) goto LBL_ERR; /* we need y = |a| */ if ((err = mp_mod(a, b, &y)) != MP_OKAY) goto LBL_ERR; /* if one of x,y is zero return an error! */ if (MP_IS_ZERO(&x) || MP_IS_ZERO(&y)) { err = MP_VAL; goto LBL_ERR; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ if ((err = mp_copy(&x, &u)) != MP_OKAY) goto LBL_ERR; if ((err = mp_copy(&y, &v)) != MP_OKAY) goto LBL_ERR; mp_set(&D, 1uL); top: /* 4. while u is even do */ while (MP_IS_EVEN(&u)) { /* 4.1 u = u/2 */ if ((err = mp_div_2(&u, &u)) != MP_OKAY) goto LBL_ERR; /* 4.2 if B is odd then */ if (MP_IS_ODD(&B)) { if ((err = mp_sub(&B, &x, &B)) != MP_OKAY) goto LBL_ERR; } /* B = B/2 */ if ((err = mp_div_2(&B, &B)) != MP_OKAY) goto LBL_ERR; } /* 5. while v is even do */ while (MP_IS_EVEN(&v)) { /* 5.1 v = v/2 */ if ((err = mp_div_2(&v, &v)) != MP_OKAY) goto LBL_ERR; /* 5.2 if D is odd then */ if (MP_IS_ODD(&D)) { /* D = (D-x)/2 */ if ((err = mp_sub(&D, &x, &D)) != MP_OKAY) goto LBL_ERR; } /* D = D/2 */ if ((err = mp_div_2(&D, &D)) != MP_OKAY) goto LBL_ERR; } /* 6. if u >= v then */ if (mp_cmp(&u, &v) != MP_LT) { /* u = u - v, B = B - D */ if ((err = mp_sub(&u, &v, &u)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&B, &D, &B)) != MP_OKAY) goto LBL_ERR; } else { /* v - v - u, D = D - B */ if ((err = mp_sub(&v, &u, &v)) != MP_OKAY) goto LBL_ERR; if ((err = mp_sub(&D, &B, &D)) != MP_OKAY) goto LBL_ERR; } /* if not zero goto step 4 */ if (!MP_IS_ZERO(&u)) { goto top; } /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (mp_cmp_d(&v, 1uL) != MP_EQ) { err = MP_VAL; goto LBL_ERR; } /* b is now the inverse */ neg = a->sign; while (D.sign == MP_NEG) { if ((err = mp_add(&D, b, &D)) != MP_OKAY) goto LBL_ERR; } /* too big */ while (mp_cmp_mag(&D, b) != MP_LT) { if ((err = mp_sub(&D, b, &D)) != MP_OKAY) goto LBL_ERR; } mp_exch(&D, c); c->sign = neg; err = MP_OKAY; LBL_ERR: mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL); return err; } #endif