0
|
1 #include <stdio.h> |
|
2 #include <string.h> |
|
3 #include <stddef.h> |
|
4 #include <stdbool.h> |
|
5 #include <stdlib.h> |
|
6 #include <avr/io.h> |
|
7 #include <avr/interrupt.h> |
|
8 #include <avr/sleep.h> |
|
9 #include <util/delay.h> |
|
10 #include <avr/pgmspace.h> |
|
11 #include <avr/eeprom.h> |
|
12 #include <avr/wdt.h> |
|
13 #include <util/atomic.h> |
|
14 #include <util/crc16.h> |
|
15 |
|
16 #include "simple_ds18b20.h" |
|
17 #include "onewire.h" |
|
18 |
|
19 // configuration params |
|
20 // - measurement interval |
|
21 // - transmit interval |
|
22 // - bluetooth params |
|
23 // - number of sensors (and range?) |
|
24 |
|
25 #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) |
|
26 #define MAX(X,Y) ((X) > (Y) ? (X) : (Y)) |
|
27 |
|
28 // TICK should be 8 or less (8 untested). all timers need |
|
29 // to be a multiple. |
|
30 |
|
31 #define TICK 6 |
|
32 // we have 1024 prescaler, 32768 crystal. |
|
33 #define SLEEP_COMPARE (32*TICK-1) |
|
34 |
|
35 #define VALUE_NOSENSOR 0x07D0 // 125 degrees |
|
36 #define VALUE_BROKEN 0x07D1 // 125.0625 |
|
37 |
|
38 #define OVERSHOOT_MAX_DIV 1800.0 // 30 mins |
|
39 #define WORT_INVALID_TIME 900 // 15 mins |
|
40 // fridge min/max are only used if the wort sensor is invalid |
|
41 #define FRIDGE_AIR_MIN_RANGE 40 // 4º |
|
42 #define FRIDGE_AIR_MAX_RANGE 40 // 4º |
|
43 |
|
44 #define BAUD 19200 |
|
45 #define UBRR ((F_CPU)/8/(BAUD)-1) |
|
46 |
|
47 #define PORT_LED PORTC |
|
48 #define DDR_LED DDRC |
|
49 #define PIN_LED PC4 |
|
50 |
|
51 #define PORT_SHDN PORTD |
|
52 #define DDR_SHDN DDRD |
|
53 #define PIN_SHDN PD7 |
|
54 |
|
55 #define PORT_FRIDGE PORTD |
|
56 #define DDR_FRIDGE DDRD |
|
57 #define PIN_FRIDGE PD6 |
|
58 |
|
59 // total amount of 16bit values available for measurements. |
|
60 // adjust emperically, be sure to allow enough stack space too |
|
61 #define TOTAL_MEASUREMENTS 800 |
|
62 |
|
63 // each sensor slot uses 8 bytes |
|
64 #define MAX_SENSORS 6 |
|
65 |
|
66 // fixed at 8, have a shorter name |
|
67 #define ID_LEN OW_ROMCODE_SIZE |
|
68 |
|
69 // #define HAVE_UART_ECHO |
|
70 |
|
71 // stores a value of clock_epoch combined with the remainder of TCNT2, |
|
72 // for 1/32 second accuracy |
|
73 struct epoch_ticks |
|
74 { |
|
75 uint32_t ticks; |
|
76 // remainder |
|
77 uint8_t rem; |
|
78 }; |
|
79 |
|
80 // eeprom-settable parameters. all timeouts should |
|
81 // be a multiple of TICK (6 seconds probably) |
|
82 static uint16_t measure_wake = 61; // not a divisor of comms_wake |
|
83 static uint16_t comms_wake = 600; |
|
84 static uint8_t wake_secs = 30; |
|
85 // decidegrees |
|
86 static int16_t fridge_setpoint = 180; // 18.0ºC |
|
87 static uint16_t fridge_difference = 3; // 0.3ºC |
|
88 static uint16_t fridge_delay = 600; // seconds |
|
89 |
|
90 static uint16_t overshoot_delay = 720; // 12 mins |
|
91 static uint8_t overshoot_factor = 10; // 1.0ºC |
|
92 |
|
93 // ---- Atomic guards required accessing these variables |
|
94 // clock_epoch in seconds |
|
95 static uint32_t clock_epoch; |
|
96 static uint16_t comms_count; |
|
97 static uint16_t measure_count; |
|
98 // ---- End atomic guards required |
|
99 |
|
100 static uint16_t n_measurements; |
|
101 |
|
102 // calculated at startup as TOTAL_MEASUREMENTS/n_sensors |
|
103 static uint16_t max_measurements; |
|
104 |
|
105 static uint16_t measurements[TOTAL_MEASUREMENTS]; |
|
106 |
|
107 static struct epoch_ticks first_measurement_clock; |
|
108 // last_measurement_clock is redundant but checks that we're not missing |
|
109 // samples |
|
110 static struct epoch_ticks last_measurement_clock; |
|
111 static struct epoch_ticks last_comms_clock; |
|
112 |
|
113 // boolean flags |
|
114 static uint8_t need_measurement; |
|
115 static uint8_t need_comms; |
|
116 static uint8_t uart_enabled; |
|
117 static uint8_t stay_awake; |
|
118 static uint8_t button_pressed; |
|
119 |
|
120 // counts down from WAKE_SECS to 0, goes to deep sleep when hits 0 |
|
121 static uint8_t comms_timeout; |
|
122 |
|
123 static uint8_t readpos; |
|
124 static char readbuf[30]; |
|
125 static uint8_t have_cmd; |
|
126 |
|
127 static uint8_t n_sensors; |
|
128 static uint8_t sensor_id[MAX_SENSORS][ID_LEN]; |
|
129 |
|
130 static int16_t last_fridge = DS18X20_INVALID_DECICELSIUS; |
|
131 static int16_t last_wort = DS18X20_INVALID_DECICELSIUS; |
|
132 static struct epoch_ticks fridge_off_clock = {0}; |
|
133 static struct epoch_ticks fridge_on_clock = {0}; |
|
134 static struct epoch_ticks wort_valid_clock = {0}; |
|
135 |
|
136 int uart_putchar(char c, FILE *stream); |
|
137 static void long_delay(int ms); |
|
138 static void blink(); |
|
139 static uint16_t adc_vcc(); |
|
140 |
|
141 static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL, |
|
142 _FDEV_SETUP_WRITE); |
|
143 |
|
144 static uint16_t crc_out; |
|
145 static FILE _crc_stdout = FDEV_SETUP_STREAM(uart_putchar, NULL, |
|
146 _FDEV_SETUP_WRITE); |
|
147 // convenience |
|
148 static FILE *crc_stdout = &_crc_stdout; |
|
149 |
|
150 |
|
151 // thanks to http://projectgus.com/2010/07/eeprom-access-with-arduino/ |
|
152 #define eeprom_read_to(dst_p, eeprom_field, dst_size) eeprom_read_block((dst_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (dst_size)) |
|
153 #define eeprom_read(dst, eeprom_field) eeprom_read_to((&dst), eeprom_field, sizeof(dst)) |
|
154 #define eeprom_write_from(src_p, eeprom_field, src_size) eeprom_write_block((src_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (src_size)) |
|
155 #define eeprom_write(src, eeprom_field) { eeprom_write_from(&src, eeprom_field, sizeof(src)); } |
|
156 |
|
157 #define EXPECT_MAGIC 0x67c9 |
|
158 |
|
159 struct __attribute__ ((__packed__)) __eeprom_data { |
|
160 uint16_t measure_wake; |
|
161 uint16_t comms_wake; |
|
162 uint8_t wake_secs; |
|
163 |
|
164 int16_t fridge_setpoint; // decidegrees |
|
165 uint16_t fridge_difference; // decidegrees |
|
166 uint16_t fridge_delay; |
|
167 |
|
168 uint16_t overshoot_delay; |
|
169 uint8_t overshoot_factor; // decidegrees |
|
170 |
|
171 #if 0 |
|
172 static uint8_t wort_id[ID_LEN]; |
|
173 static uint8_t fridge_id[ID_LEN]; |
|
174 #endif |
|
175 |
|
176 uint16_t magic; |
|
177 }; |
|
178 |
|
179 static const uint8_t fridge_id[ID_LEN] = |
|
180 {0x28,0xCE,0xB2,0x1A,0x03,0x00,0x00,0x99}; |
|
181 static const uint8_t wort_id[ID_LEN] = |
|
182 {0x28,0x49,0xBC,0x1A,0x03,0x00,0x00,0x54}; |
|
183 |
|
184 static void deep_sleep(); |
|
185 |
|
186 // 0 or 1 |
|
187 static uint8_t |
|
188 is_fridge_on() |
|
189 { |
|
190 if (PORT_FRIDGE & _BV(PIN_FRIDGE)) |
|
191 { |
|
192 return 1; |
|
193 } |
|
194 else |
|
195 { |
|
196 return 0; |
|
197 } |
|
198 } |
|
199 |
|
200 // Very first setup |
|
201 static void |
|
202 setup_chip() |
|
203 { |
|
204 cli(); |
|
205 |
|
206 // stop watchdog timer (might have been used to cause a reset) |
|
207 wdt_reset(); |
|
208 MCUSR &= ~_BV(WDRF); |
|
209 WDTCSR |= _BV(WDCE) | _BV(WDE); |
|
210 WDTCSR = 0; |
|
211 |
|
212 // Set clock to 2mhz |
|
213 CLKPR = _BV(CLKPCE); |
|
214 // divide by 4 |
|
215 CLKPR = _BV(CLKPS1); |
|
216 |
|
217 // enable pullups |
|
218 PORTB = 0xff; // XXX change when using SPI |
|
219 PORTD = 0xff; |
|
220 PORTC = 0xff; |
|
221 |
|
222 // 3.3v power for bluetooth and SD |
|
223 DDR_LED |= _BV(PIN_LED); |
|
224 DDR_SHDN |= _BV(PIN_SHDN); |
|
225 |
|
226 PORT_FRIDGE &= ~_BV(PIN_FRIDGE); |
|
227 DDR_FRIDGE |= _BV(PIN_FRIDGE); |
|
228 |
|
229 // set pullup |
|
230 PORTD |= _BV(PD2); |
|
231 // INT0 setup |
|
232 EICRA = (1<<ISC01); // falling edge - data sheet says it won't work? |
|
233 EIMSK = _BV(INT0); |
|
234 |
|
235 // comparator disable |
|
236 ACSR = _BV(ACD); |
|
237 |
|
238 // disable adc pin input buffers |
|
239 DIDR0 = 0x3F; // acd0-adc5 |
|
240 DIDR1 = (1<<AIN1D)|(1<<AIN0D); // ain0/ain1 |
|
241 |
|
242 sei(); |
|
243 } |
|
244 |
|
245 static void |
|
246 set_aux_power(uint8_t on) |
|
247 { |
|
248 if (on) |
|
249 { |
|
250 PORT_SHDN &= ~_BV(PIN_SHDN); |
|
251 } |
|
252 else |
|
253 { |
|
254 PORT_SHDN |= _BV(PIN_SHDN); |
|
255 } |
|
256 } |
|
257 |
|
258 static void |
|
259 get_epoch_ticks(struct epoch_ticks *t) |
|
260 { |
|
261 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
|
262 { |
|
263 t->ticks = clock_epoch; |
|
264 t->rem = TCNT2; |
|
265 } |
|
266 } |
|
267 |
|
268 static void |
|
269 set_measurement(uint8_t sensor, uint16_t measurement, uint16_t reading) |
|
270 { |
|
271 measurements[sensor*max_measurements + measurement] = reading; |
|
272 } |
|
273 |
|
274 static uint16_t |
|
275 get_measurement(uint8_t sensor, uint16_t measurement) |
|
276 { |
|
277 return measurements[sensor*max_measurements + measurement]; |
|
278 } |
|
279 |
|
280 static void |
|
281 setup_tick_counter() |
|
282 { |
|
283 // set up counter2. |
|
284 // COM21 COM20 Set OC2 on Compare Match (p116) |
|
285 // WGM21 Clear counter on compare |
|
286 //TCCR2A = _BV(COM2A1) | _BV(COM2A0) | _BV(WGM21); |
|
287 // toggle on match |
|
288 TCCR2A = _BV(COM2A0); |
|
289 // CS22 CS21 CS20 clk/1024 |
|
290 TCCR2B = _BV(CS22) | _BV(CS21) | _BV(CS20); |
|
291 // set async mode |
|
292 ASSR |= _BV(AS2); |
|
293 TCNT2 = 0; |
|
294 OCR2A = SLEEP_COMPARE; |
|
295 // interrupt |
|
296 TIMSK2 = _BV(OCIE2A); |
|
297 } |
|
298 |
|
299 static void |
|
300 uart_on() |
|
301 { |
|
302 // Power reduction register |
|
303 PRR &= ~_BV(PRUSART0); |
|
304 |
|
305 // All of this needs to be done each time after turning off the PRR |
|
306 // baud rate |
|
307 UBRR0H = (unsigned char)(UBRR >> 8); |
|
308 UBRR0L = (unsigned char)UBRR; |
|
309 // set 2x clock, improves accuracy of UBRR |
|
310 UCSR0A |= _BV(U2X0); |
|
311 UCSR0B = _BV(RXCIE0) | _BV(RXEN0) | _BV(TXEN0); |
|
312 //8N1 |
|
313 UCSR0C = _BV(UCSZ01) | _BV(UCSZ00); |
|
314 uart_enabled = 1; |
|
315 } |
|
316 |
|
317 static void |
|
318 uart_off() |
|
319 { |
|
320 // Turn off interrupts and disable tx/rx |
|
321 UCSR0B = 0; |
|
322 uart_enabled = 0; |
|
323 |
|
324 // Power reduction register |
|
325 PRR |= _BV(PRUSART0); |
|
326 } |
|
327 |
|
328 int |
|
329 uart_putchar(char c, FILE *stream) |
|
330 { |
|
331 if (!uart_enabled) |
|
332 { |
|
333 return EOF; |
|
334 } |
|
335 // XXX could perhaps sleep in the loop for power. |
|
336 if (c == '\n') |
|
337 { |
|
338 loop_until_bit_is_set(UCSR0A, UDRE0); |
|
339 UDR0 = '\r'; |
|
340 } |
|
341 loop_until_bit_is_set(UCSR0A, UDRE0); |
|
342 UDR0 = c; |
|
343 if (stream == crc_stdout) |
|
344 { |
|
345 crc_out = _crc_ccitt_update(crc_out, c); |
|
346 } |
|
347 if (c == '\r') |
|
348 { |
|
349 loop_until_bit_is_set(UCSR0A, UDRE0); |
|
350 UDR0 = '\n'; |
|
351 if (stream == crc_stdout) |
|
352 { |
|
353 crc_out = _crc_ccitt_update(crc_out, '\n'); |
|
354 } |
|
355 } |
|
356 return (unsigned char)c; |
|
357 } |
|
358 |
|
359 static void |
|
360 cmd_fetch() |
|
361 { |
|
362 crc_out = 0; |
|
363 |
|
364 fprintf_P(crc_stdout, PSTR("START\n")); |
|
365 { |
|
366 struct epoch_ticks now; |
|
367 get_epoch_ticks(&now); |
|
368 fprintf_P(crc_stdout, PSTR("now=%lu\n"), now.ticks); |
|
369 fprintf_P(crc_stdout, PSTR("now_rem=%hhu\n"), now.rem); |
|
370 } |
|
371 fprintf_P(crc_stdout, PSTR("time_step=%hu\n"), measure_wake); |
|
372 fprintf_P(crc_stdout, PSTR("first_time=%lu\n"), first_measurement_clock.ticks); |
|
373 fprintf_P(crc_stdout, PSTR("first_time_rem=%hhu\n"), first_measurement_clock.rem); |
|
374 fprintf_P(crc_stdout, PSTR("last_time=%lu\n"), last_measurement_clock.ticks); |
|
375 fprintf_P(crc_stdout, PSTR("last_time_rem=%hhu\n"), last_measurement_clock.rem); |
|
376 fprintf_P(crc_stdout, PSTR("comms_time=%lu\n"), last_comms_clock.ticks); |
|
377 fprintf_P(crc_stdout, PSTR("comms_time_rem=%hhu\n"), last_comms_clock.rem); |
|
378 fprintf_P(crc_stdout, PSTR("voltage=%hu\n"), adc_vcc()); |
|
379 fprintf_P(crc_stdout, PSTR("measure=%hu\n"), measure_wake); |
|
380 fprintf_P(crc_stdout, PSTR("comms=%hu\n"), comms_wake); |
|
381 fprintf_P(crc_stdout, PSTR("wake=%hhu\n"), wake_secs); |
|
382 fprintf_P(crc_stdout, PSTR("fridge=%.1f\n"), fridge_setpoint/10.0); |
|
383 fprintf_P(crc_stdout, PSTR("fridge_diff=%.1f\n"), fridge_difference/10.0); |
|
384 fprintf_P(crc_stdout, PSTR("fridge_delay=%hu\n"), fridge_delay); |
|
385 fprintf_P(crc_stdout, PSTR("overshoot_factor=%.1f\n"), overshoot_factor/10.0); |
|
386 fprintf_P(crc_stdout, PSTR("overshoot_delay=%hu\n"), overshoot_delay); |
|
387 fprintf_P(crc_stdout, PSTR("fridge_status=%hhu\n"), is_fridge_on()); |
|
388 fprintf_P(crc_stdout, PSTR("fridge_last_on=%lu\n"), fridge_on_clock.ticks); |
|
389 fprintf_P(crc_stdout, PSTR("fridge_last_off=%lu\n"), fridge_off_clock.ticks); |
|
390 fprintf_P(crc_stdout, PSTR("last_fridge=%hu\n"), last_fridge); |
|
391 fprintf_P(crc_stdout, PSTR("last_wort=%hu\n"), last_wort); |
|
392 fprintf_P(crc_stdout, PSTR("tick_secs=%d\n"), TICK); |
|
393 fprintf_P(crc_stdout, PSTR("tick_wake=%d\n"), SLEEP_COMPARE); |
|
394 fprintf_P(crc_stdout, PSTR("maxsens=%hhu\n"), MAX_SENSORS); |
|
395 fprintf_P(crc_stdout, PSTR("totalmeas=%hu\n"), TOTAL_MEASUREMENTS); |
|
396 fprintf_P(crc_stdout, PSTR("sensors=%hhu\n"), n_sensors); |
|
397 for (uint8_t s = 0; s < n_sensors; s++) |
|
398 { |
|
399 fprintf_P(crc_stdout, PSTR("sensor_id%hhu="), s); |
|
400 printhex(sensor_id[s], ID_LEN, crc_stdout); |
|
401 fputc('\n', crc_stdout); |
|
402 } |
|
403 fprintf_P(crc_stdout, PSTR("measurements=%hu\n"), n_measurements); |
|
404 for (uint16_t n = 0; n < n_measurements; n++) |
|
405 { |
|
406 fprintf_P(crc_stdout, PSTR("meas%hu="), n); |
|
407 for (uint8_t s = 0; s < n_sensors; s++) |
|
408 { |
|
409 fprintf_P(crc_stdout, PSTR(" %04hx"), get_measurement(s, n)); |
|
410 } |
|
411 fputc('\n', crc_stdout); |
|
412 } |
|
413 fprintf_P(crc_stdout, PSTR("END\n")); |
|
414 fprintf_P(stdout, PSTR("CRC=%hu\n"), crc_out); |
|
415 } |
|
416 |
|
417 static void |
|
418 cmd_clear() |
|
419 { |
|
420 n_measurements = 0; |
|
421 printf_P(PSTR("cleared\n")); |
|
422 } |
|
423 |
|
424 static void |
|
425 cmd_btoff() |
|
426 { |
|
427 uint8_t rem; |
|
428 uint16_t count_copy; |
|
429 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
|
430 { |
|
431 count_copy = comms_count; |
|
432 rem = TCNT2; |
|
433 } |
|
434 printf_P(PSTR("next_wake=%hu,"), comms_wake-count_copy); |
|
435 printf_P(PSTR("rem=%hhu,"), rem); |
|
436 printf_P(PSTR("tick_secs=%hhu,"), TICK); |
|
437 printf_P(PSTR("tick_wake=%hhu\n"), SLEEP_COMPARE); |
|
438 _delay_ms(100); |
|
439 comms_timeout = 0; |
|
440 stay_awake = 0; |
|
441 } |
|
442 |
|
443 static void |
|
444 cmd_reset() |
|
445 { |
|
446 printf_P(PSTR("reset\n")); |
|
447 _delay_ms(100); |
|
448 cli(); // disable interrupts |
|
449 wdt_enable(WDTO_15MS); // enable watchdog |
|
450 while(1); // wait for watchdog to reset processor |
|
451 } |
|
452 |
|
453 static void |
|
454 cmd_measure() |
|
455 { |
|
456 printf_P(PSTR("measuring\n")); |
|
457 need_measurement = 1; |
|
458 } |
|
459 |
|
460 static void |
|
461 cmd_sensors() |
|
462 { |
|
463 uint8_t ret = simple_ds18b20_start_meas(NULL); |
|
464 printf_P(PSTR("All sensors, ret %hhu, waiting...\n"), ret); |
|
465 long_delay(DS18B20_TCONV_12BIT); |
|
466 simple_ds18b20_read_all(); |
|
467 } |
|
468 |
|
469 static void |
|
470 init_sensors() |
|
471 { |
|
472 uint8_t id[OW_ROMCODE_SIZE]; |
|
473 printf_P(PSTR("init sensors\n")); |
|
474 ow_reset(); |
|
475 for( uint8_t diff = OW_SEARCH_FIRST; diff != OW_LAST_DEVICE; ) |
|
476 { |
|
477 diff = ow_rom_search( diff, &id[0] ); |
|
478 if( diff == OW_PRESENCE_ERR ) { |
|
479 printf_P( PSTR("No Sensor found\r") ); |
|
480 return; |
|
481 } |
|
482 |
|
483 if( diff == OW_DATA_ERR ) { |
|
484 printf_P( PSTR("Bus Error\r") ); |
|
485 return; |
|
486 } |
|
487 |
|
488 if (n_sensors < MAX_SENSORS) |
|
489 { |
|
490 memcpy(sensor_id[n_sensors], id, ID_LEN); |
|
491 printf_P(PSTR("Added sensor %hhu : "), n_sensors); |
|
492 printhex(id, ID_LEN, stdout); |
|
493 putchar('\n'); |
|
494 n_sensors++; |
|
495 } |
|
496 else |
|
497 { |
|
498 printf_P(PSTR("Too many sensors\n")); |
|
499 } |
|
500 } |
|
501 |
|
502 max_measurements = TOTAL_MEASUREMENTS / n_sensors; |
|
503 } |
|
504 |
|
505 static void |
|
506 load_params() |
|
507 { |
|
508 uint16_t magic; |
|
509 eeprom_read(magic, magic); |
|
510 if (magic == EXPECT_MAGIC) |
|
511 { |
|
512 eeprom_read(measure_wake, measure_wake); |
|
513 eeprom_read(comms_wake, comms_wake); |
|
514 eeprom_read(wake_secs, wake_secs); |
|
515 eeprom_read(fridge_setpoint, fridge_setpoint); |
|
516 eeprom_read(fridge_difference, fridge_difference); |
|
517 eeprom_read(fridge_delay, fridge_delay); |
|
518 eeprom_read(overshoot_delay, overshoot_delay); |
|
519 eeprom_read(overshoot_factor, overshoot_factor); |
|
520 } |
|
521 } |
|
522 |
|
523 static void |
|
524 cmd_get_params() |
|
525 { |
|
526 printf_P(PSTR("measure %hu\n"), measure_wake); |
|
527 printf_P(PSTR("comms %hu\n"), comms_wake); |
|
528 printf_P(PSTR("wake %hhu\n"), wake_secs); |
|
529 printf_P(PSTR("tick %d\n"), TICK); |
|
530 printf_P(PSTR("fridge %.1fº\n"), fridge_setpoint / 10.0f); |
|
531 printf_P(PSTR("fridge difference %.1fº\n"), fridge_difference / 10.0f); |
|
532 printf_P(PSTR("fridge_delay %hu\n"), fridge_delay); |
|
533 printf_P(PSTR("overshoot factor %.1fº\n"), overshoot_factor / 10.0f); |
|
534 printf_P(PSTR("overshoot delay %hu\n"), overshoot_delay); |
|
535 printf_P(PSTR("sensors %hhu (%hhu)\n"), |
|
536 n_sensors, MAX_SENSORS); |
|
537 printf_P(PSTR("meas %hu (%hu)\n"), |
|
538 max_measurements, TOTAL_MEASUREMENTS); |
|
539 } |
|
540 |
|
541 static void |
|
542 cmd_set_params(const char *params) |
|
543 { |
|
544 uint16_t new_measure_wake; |
|
545 uint16_t new_comms_wake; |
|
546 uint8_t new_wake_secs; |
|
547 int ret = sscanf_P(params, PSTR("%hu %hu %hhu"), |
|
548 &new_measure_wake, &new_comms_wake, &new_wake_secs); |
|
549 |
|
550 if (ret != 3) |
|
551 { |
|
552 printf_P(PSTR("Bad values\n")); |
|
553 } |
|
554 else |
|
555 { |
|
556 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
|
557 { |
|
558 eeprom_write(new_measure_wake, measure_wake); |
|
559 eeprom_write(new_comms_wake, comms_wake); |
|
560 eeprom_write(new_wake_secs, wake_secs); |
|
561 uint16_t magic = EXPECT_MAGIC; |
|
562 eeprom_write(magic, magic); |
|
563 } |
|
564 printf_P(PSTR("set_params for next boot\n")); |
|
565 printf_P(PSTR("measure %hu comms %hu wake %hhu\n"), |
|
566 new_measure_wake, new_comms_wake, new_wake_secs); |
|
567 } |
|
568 } |
|
569 |
|
570 // returns true if eeprom was written |
|
571 static bool |
|
572 set_initial_eeprom() |
|
573 { |
|
574 uint16_t magic; |
|
575 eeprom_read(magic, magic); |
|
576 if (magic == EXPECT_MAGIC) |
|
577 { |
|
578 return false; |
|
579 } |
|
580 |
|
581 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
|
582 { |
|
583 eeprom_write(measure_wake, measure_wake); |
|
584 eeprom_write(comms_wake, comms_wake); |
|
585 eeprom_write(wake_secs, wake_secs); |
|
586 eeprom_write(fridge_setpoint, fridge_setpoint); |
|
587 eeprom_write(fridge_difference, fridge_difference); |
|
588 eeprom_write(fridge_delay, fridge_delay); |
|
589 eeprom_write(overshoot_delay, overshoot_delay); |
|
590 eeprom_write(overshoot_factor, overshoot_factor); |
|
591 magic = EXPECT_MAGIC; |
|
592 eeprom_write(magic, magic); |
|
593 } |
|
594 |
|
595 return true; |
|
596 } |
|
597 |
|
598 static void |
|
599 cmd_set_fridge_setpoint(char *params) |
|
600 { |
|
601 float new_f = atof(params); |
|
602 if (new_f < 2 || new_f > 30) |
|
603 { |
|
604 printf_P(PSTR("Bad fridge value %f\n"), new_f); |
|
605 return; |
|
606 } |
|
607 |
|
608 int16_t old_setpoint = fridge_setpoint; |
|
609 |
|
610 fridge_setpoint = new_f * 10; |
|
611 bool written = set_initial_eeprom(); |
|
612 if (!written) |
|
613 { |
|
614 if (old_setpoint != fridge_setpoint) |
|
615 { |
|
616 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
|
617 { |
|
618 eeprom_write(fridge_setpoint, fridge_setpoint); |
|
619 } |
|
620 } |
|
621 } |
|
622 printf_P(PSTR("old fridge %.1fº new fridge %.1fº\n"), |
|
623 old_setpoint / 10.0f, fridge_setpoint / 10.0f); |
|
624 } |
|
625 |
|
626 static void |
|
627 cmd_set_fridge_difference(char *params) |
|
628 { |
|
629 float new_f = atof(params); |
|
630 if (new_f < 0 || new_f > 30) |
|
631 { |
|
632 printf_P(PSTR("Bad fridge value %f\n"), new_f); |
|
633 return; |
|
634 } |
|
635 |
|
636 fridge_difference = new_f * 10; |
|
637 bool written = set_initial_eeprom(); |
|
638 if (!written) |
|
639 { |
|
640 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
|
641 { |
|
642 eeprom_write(fridge_difference, fridge_difference); |
|
643 } |
|
644 } |
|
645 printf_P(PSTR("new fridge difference %.1fº\n"), fridge_difference / 10.0f); |
|
646 } |
|
647 |
|
648 static void |
|
649 cmd_set_fridge_delay(char *params) |
|
650 { |
|
651 uint16_t new_delay = atoi(params); |
|
652 if (new_delay < 5) |
|
653 { |
|
654 printf_P(PSTR("Bad fridge delay %d\n"), new_delay); |
|
655 return; |
|
656 } |
|
657 |
|
658 fridge_delay = new_delay; |
|
659 bool written = set_initial_eeprom(); |
|
660 if (!written) |
|
661 { |
|
662 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
|
663 { |
|
664 eeprom_write(fridge_delay, fridge_delay); |
|
665 } |
|
666 } |
|
667 printf_P(PSTR("new fridge delay %hu\n"), fridge_delay); |
|
668 } |
|
669 |
|
670 static void |
|
671 cmd_set_overshoot_factor(char *params) |
|
672 { |
|
673 float new_f = atof(params); |
|
674 if (new_f <= 0 || new_f > 20) |
|
675 { |
|
676 printf_P(PSTR("Bad overshoot factor %f\n"), new_f); |
|
677 return; |
|
678 } |
|
679 |
|
680 uint8_t old = overshoot_factor; |
|
681 |
|
682 overshoot_factor = new_f * 10; |
|
683 bool written = set_initial_eeprom(); |
|
684 if (!written) |
|
685 { |
|
686 if (old != overshoot_factor) |
|
687 { |
|
688 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
|
689 { |
|
690 eeprom_write(overshoot_factor, overshoot_factor); |
|
691 } |
|
692 } |
|
693 } |
|
694 printf_P(PSTR("old factor %.1fº new factor %.1fº\n"), |
|
695 old / 10.0f, overshoot_factor / 10.0f); |
|
696 } |
|
697 |
|
698 static void |
|
699 cmd_set_overshoot_delay(char *params) |
|
700 { |
|
701 uint16_t new_delay = atoi(params); |
|
702 if (new_delay < 5) |
|
703 { |
|
704 printf_P(PSTR("Bad overshoot delay %d\n"), new_delay); |
|
705 return; |
|
706 } |
|
707 |
|
708 overshoot_delay = new_delay; |
|
709 bool written = set_initial_eeprom(); |
|
710 if (!written) |
|
711 { |
|
712 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) |
|
713 { |
|
714 eeprom_write(overshoot_delay, overshoot_delay); |
|
715 } |
|
716 } |
|
717 printf_P(PSTR("new overshoot delay %hu\n"), overshoot_delay); |
|
718 } |
|
719 |
|
720 static void |
|
721 cmd_awake() |
|
722 { |
|
723 stay_awake = 1; |
|
724 printf_P(PSTR("awake\n")); |
|
725 } |
|
726 |
|
727 static void |
|
728 read_handler() |
|
729 { |
|
730 if (strcmp_P(readbuf, PSTR("fetch")) == 0) |
|
731 { |
|
732 cmd_fetch(); |
|
733 } |
|
734 else if (strcmp_P(readbuf, PSTR("clear")) == 0) |
|
735 { |
|
736 cmd_clear(); |
|
737 } |
|
738 else if (strcmp_P(readbuf, PSTR("btoff")) == 0) |
|
739 { |
|
740 cmd_btoff(); |
|
741 } |
|
742 else if (strcmp_P(readbuf, PSTR("measure")) == 0) |
|
743 { |
|
744 cmd_measure(); |
|
745 } |
|
746 else if (strcmp_P(readbuf, PSTR("sensors")) == 0) |
|
747 { |
|
748 cmd_sensors(); |
|
749 } |
|
750 else if (strcmp_P(readbuf, PSTR("get_params")) == 0) |
|
751 { |
|
752 cmd_get_params(); |
|
753 } |
|
754 else if (strncmp_P(readbuf, PSTR("set_params "), 11) == 0) |
|
755 { |
|
756 cmd_set_params(&readbuf[11]); |
|
757 } |
|
758 else if (strcmp_P(readbuf, PSTR("awake")) == 0) |
|
759 { |
|
760 cmd_awake(); |
|
761 } |
|
762 else if (strncmp_P(readbuf, PSTR("fridge_setpoint "), 16) == 0) |
|
763 { |
|
764 cmd_set_fridge_setpoint(&readbuf[16]); |
|
765 } |
|
766 else if (strncmp_P(readbuf, PSTR("fridge_diff "), 12) == 0) |
|
767 { |
|
768 cmd_set_fridge_difference(&readbuf[12]); |
|
769 } |
|
770 else if (strncmp_P(readbuf, PSTR("fridge_delay "), 13) == 0) |
|
771 { |
|
772 cmd_set_fridge_delay(&readbuf[13]); |
|
773 } |
|
774 else if (strncmp_P(readbuf, PSTR("overshoot_delay "), 16) == 0) |
|
775 { |
|
776 cmd_set_overshoot_delay(&readbuf[16]); |
|
777 } |
|
778 else if (strncmp_P(readbuf, PSTR("overshoot_factor "), 17) == 0) |
|
779 { |
|
780 cmd_set_overshoot_factor(&readbuf[17]); |
|
781 } |
|
782 else if (strcmp_P(readbuf, PSTR("reset")) == 0) |
|
783 { |
|
784 cmd_reset(); |
|
785 } |
|
786 else |
|
787 { |
|
788 printf_P(PSTR("Bad command '%s'\n"), readbuf); |
|
789 } |
|
790 } |
|
791 |
|
792 ISR(INT0_vect) |
|
793 { |
|
794 button_pressed = 1; |
|
795 blink(); |
|
796 _delay_ms(100); |
|
797 blink(); |
|
798 } |
|
799 |
|
800 |
|
801 ISR(USART_RX_vect) |
|
802 { |
|
803 char c = UDR0; |
|
804 #ifdef HAVE_UART_ECHO |
|
805 uart_putchar(c, NULL); |
|
806 #endif |
|
807 if (c == '\r' || c == '\n') |
|
808 { |
|
809 if (readpos > 0) |
|
810 { |
|
811 readbuf[readpos] = '\0'; |
|
812 have_cmd = 1; |
|
813 readpos = 0; |
|
814 } |
|
815 } |
|
816 else |
|
817 { |
|
818 readbuf[readpos] = c; |
|
819 readpos++; |
|
820 if (readpos >= sizeof(readbuf)) |
|
821 { |
|
822 readpos = 0; |
|
823 } |
|
824 } |
|
825 } |
|
826 |
|
827 ISR(TIMER2_COMPA_vect) |
|
828 { |
|
829 TCNT2 = 0; |
|
830 measure_count += TICK; |
|
831 comms_count += TICK; |
|
832 |
|
833 clock_epoch += TICK; |
|
834 |
|
835 if (comms_timeout != 0) |
|
836 { |
|
837 comms_timeout -= TICK; |
|
838 } |
|
839 |
|
840 if (measure_count >= measure_wake) |
|
841 { |
|
842 measure_count = 0; |
|
843 need_measurement = 1; |
|
844 } |
|
845 |
|
846 if (comms_count >= comms_wake) |
|
847 { |
|
848 comms_count = 0; |
|
849 need_comms = 1; |
|
850 } |
|
851 } |
|
852 |
|
853 static void |
|
854 deep_sleep() |
|
855 { |
|
856 // p119 of manual |
|
857 OCR2A = SLEEP_COMPARE; |
|
858 loop_until_bit_is_clear(ASSR, OCR2AUB); |
|
859 |
|
860 set_sleep_mode(SLEEP_MODE_PWR_SAVE); |
|
861 sleep_mode(); |
|
862 } |
|
863 |
|
864 static void |
|
865 idle_sleep() |
|
866 { |
|
867 set_sleep_mode(SLEEP_MODE_IDLE); |
|
868 sleep_mode(); |
|
869 } |
|
870 |
|
871 static uint16_t |
|
872 adc_vcc() |
|
873 { |
|
874 PRR &= ~_BV(PRADC); |
|
875 |
|
876 // /16 prescaler |
|
877 ADCSRA = _BV(ADEN) | _BV(ADPS2); |
|
878 |
|
879 // set to measure 1.1 reference |
|
880 ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); |
|
881 // average a number of samples |
|
882 uint16_t sum = 0; |
|
883 uint8_t num = 0; |
|
884 for (uint8_t n = 0; n < 20; n++) |
|
885 { |
|
886 ADCSRA |= _BV(ADSC); |
|
887 loop_until_bit_is_clear(ADCSRA, ADSC); |
|
888 |
|
889 uint8_t low_11 = ADCL; |
|
890 uint8_t high_11 = ADCH; |
|
891 uint16_t val = low_11 + (high_11 << 8); |
|
892 |
|
893 if (n >= 4) |
|
894 { |
|
895 sum += val; |
|
896 num++; |
|
897 } |
|
898 } |
|
899 ADCSRA = 0; |
|
900 PRR |= _BV(PRADC); |
|
901 |
|
902 //float res_volts = 1.1 * 1024 * num / sum; |
|
903 //return 1000 * res_volts; |
|
904 return ((uint32_t)1100*1024*num) / sum; |
|
905 } |
|
906 |
|
907 static void |
|
908 do_fridge() |
|
909 { |
|
910 struct epoch_ticks now; |
|
911 get_epoch_ticks(&now); |
|
912 uint32_t off_time = now.ticks - fridge_off_clock.ticks; |
|
913 bool wort_valid = last_wort != DS18X20_INVALID_DECICELSIUS; |
|
914 bool fridge_valid = last_fridge != DS18X20_INVALID_DECICELSIUS; |
|
915 |
|
916 int16_t wort_max = fridge_setpoint + fridge_difference; |
|
917 int16_t wort_min = fridge_setpoint; |
|
918 |
|
919 // the fridge min/max only apply if the wort sensor is broken |
|
920 int16_t fridge_min = fridge_setpoint - FRIDGE_AIR_MIN_RANGE; |
|
921 int16_t fridge_max = fridge_setpoint + FRIDGE_AIR_MAX_RANGE; |
|
922 |
|
923 uint8_t fridge_on = PORT_FRIDGE & _BV(PIN_FRIDGE); |
|
924 printf_P(PSTR("last_wort %hd (%hd, %hd), last_fridge %hd (%hd, %hd), setpoint %hd, diff %hd, fridge_on %hhu\n"), |
|
925 last_wort, wort_min, wort_max, |
|
926 last_fridge, fridge_min, fridge_max, |
|
927 fridge_setpoint, fridge_difference, fridge_on); |
|
928 |
|
929 if (off_time < fridge_delay) |
|
930 { |
|
931 printf_P(PSTR("waiting for fridge delay current %hu, wait %hu\n"), |
|
932 off_time, fridge_delay); |
|
933 return; |
|
934 } |
|
935 |
|
936 // handle failure of the wort sensor. if it is a short (intermittent?) |
|
937 // failure we wait until it has been broken for a period of time |
|
938 // (WORT_INVALID_TIME) before doing anything. |
|
939 if (wort_valid) |
|
940 { |
|
941 wort_valid_clock = now; |
|
942 } |
|
943 else |
|
944 { |
|
945 printf_P(PSTR("wort sensor is invalid\n")); |
|
946 uint32_t invalid_time = now.ticks - wort_valid_clock.ticks; |
|
947 if (invalid_time < WORT_INVALID_TIME) |
|
948 { |
|
949 printf("only been invalid for %ld, waiting\n", invalid_time); |
|
950 return; |
|
951 } |
|
952 } |
|
953 |
|
954 if (!fridge_valid) |
|
955 { |
|
956 printf_P(PSTR("fridge sensor is invalid\n")); |
|
957 } |
|
958 |
|
959 if (fridge_on) |
|
960 { |
|
961 bool turn_off = false; |
|
962 uint16_t on_time = now.ticks - fridge_on_clock.ticks; |
|
963 |
|
964 uint16_t overshoot = 0; |
|
965 if (on_time > overshoot_delay) |
|
966 { |
|
967 overshoot = overshoot_factor * MIN(OVERSHOOT_MAX_DIV, on_time) / OVERSHOOT_MAX_DIV; |
|
968 } |
|
969 |
|
970 printf_P(PSTR("on_time %hu, overshoot %hu\n"), on_time, overshoot); |
|
971 |
|
972 // wort has cooled enough. will probably cool a bit more by itself |
|
973 if (wort_valid) |
|
974 { |
|
975 if ((last_wort - overshoot) < fridge_setpoint) |
|
976 { |
|
977 printf_P(PSTR("wort has cooled enough, overshoot %hu on_time %hu\n"), overshoot, on_time); |
|
978 turn_off = true; |
|
979 } |
|
980 } |
|
981 else |
|
982 { |
|
983 if (fridge_valid && last_fridge < fridge_min) |
|
984 { |
|
985 printf_P(PSTR("fridge off fallback\n")); |
|
986 turn_off = true; |
|
987 } |
|
988 } |
|
989 |
|
990 if (turn_off) |
|
991 { |
|
992 // too cold, turn off |
|
993 printf_P(PSTR("Turning fridge off\n")); |
|
994 PORT_FRIDGE &= ~_BV(PIN_FRIDGE); |
|
995 fridge_off_clock = now; |
|
996 } |
|
997 } |
|
998 else |
|
999 { |
|
1000 bool turn_on = false; |
|
1001 |
|
1002 if (wort_valid) |
|
1003 { |
|
1004 if (last_wort >= wort_max) |
|
1005 { |
|
1006 printf_P(PSTR("wort is too hot\n")); |
|
1007 turn_on = true; |
|
1008 } |
|
1009 } |
|
1010 else |
|
1011 { |
|
1012 if (fridge_valid && last_fridge >= fridge_max) |
|
1013 { |
|
1014 printf_P(PSTR("fridge on fallback\n")); |
|
1015 turn_on = true; |
|
1016 } |
|
1017 } |
|
1018 |
|
1019 if (turn_on) |
|
1020 { |
|
1021 // too hot, turn on |
|
1022 printf_P(PSTR("Turning fridge on\n")); |
|
1023 PORT_FRIDGE |= _BV(PIN_FRIDGE); |
|
1024 fridge_on_clock = now; |
|
1025 } |
|
1026 } |
|
1027 } |
|
1028 |
|
1029 static void |
|
1030 do_measurement() |
|
1031 { |
|
1032 blink(); |
|
1033 |
|
1034 /* Take the timer here since deep_sleep() below could take 6 seconds */ |
|
1035 get_epoch_ticks(&last_measurement_clock); |
|
1036 if (n_measurements == 0) |
|
1037 { |
|
1038 first_measurement_clock = last_measurement_clock; |
|
1039 } |
|
1040 |
|
1041 simple_ds18b20_start_meas(NULL); |
|
1042 _delay_ms(DS18B20_TCONV_12BIT); |
|
1043 |
|
1044 if (n_measurements == max_measurements) |
|
1045 { |
|
1046 n_measurements = 0; |
|
1047 } |
|
1048 |
|
1049 for (uint8_t s = 0; s < n_sensors; s++) |
|
1050 { |
|
1051 uint16_t reading; |
|
1052 uint8_t ret = simple_ds18b20_read_raw(sensor_id[s], &reading); |
|
1053 if (ret != DS18X20_OK) |
|
1054 { |
|
1055 reading = VALUE_BROKEN; |
|
1056 } |
|
1057 set_measurement(s, n_measurements, reading); |
|
1058 |
|
1059 if (memcmp(sensor_id[s], fridge_id, sizeof(fridge_id)) == 0) |
|
1060 { |
|
1061 last_fridge = ds18b20_raw16_to_decicelsius(reading); |
|
1062 } |
|
1063 if (memcmp(sensor_id[s], wort_id, sizeof(wort_id)) == 0) |
|
1064 { |
|
1065 last_wort = ds18b20_raw16_to_decicelsius(reading); |
|
1066 } |
|
1067 } |
|
1068 |
|
1069 n_measurements++; |
|
1070 } |
|
1071 |
|
1072 static void |
|
1073 do_comms() |
|
1074 { |
|
1075 get_epoch_ticks(&last_comms_clock); |
|
1076 |
|
1077 // turn on bluetooth |
|
1078 set_aux_power(1); |
|
1079 // avoid receiving rubbish, perhaps |
|
1080 _delay_ms(50); |
|
1081 uart_on(); |
|
1082 |
|
1083 // write sd card here? same 3.3v regulator... |
|
1084 |
|
1085 for (comms_timeout = wake_secs; |
|
1086 comms_timeout > 0 || stay_awake; |
|
1087 ) |
|
1088 { |
|
1089 if (need_measurement) |
|
1090 { |
|
1091 need_measurement = 0; |
|
1092 do_measurement(); |
|
1093 do_fridge(); |
|
1094 continue; |
|
1095 } |
|
1096 |
|
1097 if (have_cmd) |
|
1098 { |
|
1099 have_cmd = 0; |
|
1100 read_handler(); |
|
1101 continue; |
|
1102 } |
|
1103 |
|
1104 // wait for commands from the master |
|
1105 idle_sleep(); |
|
1106 } |
|
1107 |
|
1108 uart_off(); |
|
1109 // in case bluetooth takes time to flush |
|
1110 _delay_ms(100); |
|
1111 set_aux_power(0); |
|
1112 } |
|
1113 |
|
1114 static void |
|
1115 blink() |
|
1116 { |
|
1117 PORT_LED &= ~_BV(PIN_LED); |
|
1118 _delay_ms(1); |
|
1119 PORT_LED |= _BV(PIN_LED); |
|
1120 } |
|
1121 |
|
1122 static void |
|
1123 long_delay(int ms) |
|
1124 { |
|
1125 int iter = ms / 100; |
|
1126 |
|
1127 for (int i = 0; i < iter; i++) |
|
1128 { |
|
1129 _delay_ms(100); |
|
1130 } |
|
1131 } |
|
1132 |
|
1133 ISR(BADISR_vect) |
|
1134 { |
|
1135 //uart_on(); |
|
1136 printf_P(PSTR("Bad interrupt\n")); |
|
1137 } |
|
1138 |
|
1139 int main(void) |
|
1140 { |
|
1141 setup_chip(); |
|
1142 blink(); |
|
1143 |
|
1144 set_aux_power(0); |
|
1145 |
|
1146 stdout = &mystdout; |
|
1147 uart_on(); |
|
1148 |
|
1149 printf(PSTR("Started.\n")); |
|
1150 |
|
1151 load_params(); |
|
1152 |
|
1153 init_sensors(); |
|
1154 |
|
1155 uart_off(); |
|
1156 |
|
1157 // turn off everything except timer2 |
|
1158 PRR = _BV(PRTWI) | _BV(PRTIM0) | _BV(PRTIM1) | _BV(PRSPI) | _BV(PRUSART0) | _BV(PRADC); |
|
1159 |
|
1160 setup_tick_counter(); |
|
1161 |
|
1162 sei(); |
|
1163 |
|
1164 need_comms = 1; |
|
1165 need_measurement = 1; |
|
1166 |
|
1167 stay_awake = 1; |
|
1168 |
|
1169 for(;;) |
|
1170 { |
|
1171 if (button_pressed) |
|
1172 { |
|
1173 // debounce |
|
1174 _delay_ms(200); |
|
1175 need_comms = 1; |
|
1176 comms_timeout = wake_secs; |
|
1177 button_pressed = 0; |
|
1178 continue; |
|
1179 } |
|
1180 |
|
1181 if (need_comms) |
|
1182 { |
|
1183 need_comms = 0; |
|
1184 do_comms(); |
|
1185 continue; |
|
1186 } |
|
1187 |
|
1188 if (need_measurement) |
|
1189 { |
|
1190 need_measurement = 0; |
|
1191 do_measurement(); |
|
1192 do_fridge(); |
|
1193 continue; |
|
1194 } |
|
1195 |
|
1196 deep_sleep(); |
|
1197 } |
|
1198 |
|
1199 return 0; /* never reached */ |
|
1200 } |