Mercurial > pihelp
comparison main.c @ 0:8705acff2494
lots of stuff
author | Matt Johnston <matt@ucc.asn.au> |
---|---|
date | Sat, 01 Jun 2013 01:38:42 +0800 |
parents | |
children | e23c1b6f6080 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:8705acff2494 |
---|---|
1 #include <stdio.h> | |
2 #include <string.h> | |
3 #include <stddef.h> | |
4 #include <stdbool.h> | |
5 #include <stdlib.h> | |
6 #include <avr/io.h> | |
7 #include <avr/interrupt.h> | |
8 #include <avr/sleep.h> | |
9 #include <util/delay.h> | |
10 #include <avr/pgmspace.h> | |
11 #include <avr/eeprom.h> | |
12 #include <avr/wdt.h> | |
13 #include <util/atomic.h> | |
14 #include <util/crc16.h> | |
15 | |
16 #include "simple_ds18b20.h" | |
17 #include "onewire.h" | |
18 | |
19 // configuration params | |
20 // - measurement interval | |
21 // - transmit interval | |
22 // - bluetooth params | |
23 // - number of sensors (and range?) | |
24 | |
25 #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) | |
26 #define MAX(X,Y) ((X) > (Y) ? (X) : (Y)) | |
27 | |
28 // TICK should be 8 or less (8 untested). all timers need | |
29 // to be a multiple. | |
30 | |
31 #define TICK 6 | |
32 // we have 1024 prescaler, 32768 crystal. | |
33 #define SLEEP_COMPARE (32*TICK-1) | |
34 | |
35 #define VALUE_NOSENSOR 0x07D0 // 125 degrees | |
36 #define VALUE_BROKEN 0x07D1 // 125.0625 | |
37 | |
38 #define OVERSHOOT_MAX_DIV 1800.0 // 30 mins | |
39 #define WORT_INVALID_TIME 900 // 15 mins | |
40 // fridge min/max are only used if the wort sensor is invalid | |
41 #define FRIDGE_AIR_MIN_RANGE 40 // 4º | |
42 #define FRIDGE_AIR_MAX_RANGE 40 // 4º | |
43 | |
44 #define BAUD 19200 | |
45 #define UBRR ((F_CPU)/8/(BAUD)-1) | |
46 | |
47 #define PORT_LED PORTC | |
48 #define DDR_LED DDRC | |
49 #define PIN_LED PC4 | |
50 | |
51 #define PORT_SHDN PORTD | |
52 #define DDR_SHDN DDRD | |
53 #define PIN_SHDN PD7 | |
54 | |
55 #define PORT_FRIDGE PORTD | |
56 #define DDR_FRIDGE DDRD | |
57 #define PIN_FRIDGE PD6 | |
58 | |
59 // total amount of 16bit values available for measurements. | |
60 // adjust emperically, be sure to allow enough stack space too | |
61 #define TOTAL_MEASUREMENTS 800 | |
62 | |
63 // each sensor slot uses 8 bytes | |
64 #define MAX_SENSORS 6 | |
65 | |
66 // fixed at 8, have a shorter name | |
67 #define ID_LEN OW_ROMCODE_SIZE | |
68 | |
69 // #define HAVE_UART_ECHO | |
70 | |
71 // stores a value of clock_epoch combined with the remainder of TCNT2, | |
72 // for 1/32 second accuracy | |
73 struct epoch_ticks | |
74 { | |
75 uint32_t ticks; | |
76 // remainder | |
77 uint8_t rem; | |
78 }; | |
79 | |
80 // eeprom-settable parameters. all timeouts should | |
81 // be a multiple of TICK (6 seconds probably) | |
82 static uint16_t measure_wake = 61; // not a divisor of comms_wake | |
83 static uint16_t comms_wake = 600; | |
84 static uint8_t wake_secs = 30; | |
85 // decidegrees | |
86 static int16_t fridge_setpoint = 180; // 18.0ºC | |
87 static uint16_t fridge_difference = 3; // 0.3ºC | |
88 static uint16_t fridge_delay = 600; // seconds | |
89 | |
90 static uint16_t overshoot_delay = 720; // 12 mins | |
91 static uint8_t overshoot_factor = 10; // 1.0ºC | |
92 | |
93 // ---- Atomic guards required accessing these variables | |
94 // clock_epoch in seconds | |
95 static uint32_t clock_epoch; | |
96 static uint16_t comms_count; | |
97 static uint16_t measure_count; | |
98 // ---- End atomic guards required | |
99 | |
100 static uint16_t n_measurements; | |
101 | |
102 // calculated at startup as TOTAL_MEASUREMENTS/n_sensors | |
103 static uint16_t max_measurements; | |
104 | |
105 static uint16_t measurements[TOTAL_MEASUREMENTS]; | |
106 | |
107 static struct epoch_ticks first_measurement_clock; | |
108 // last_measurement_clock is redundant but checks that we're not missing | |
109 // samples | |
110 static struct epoch_ticks last_measurement_clock; | |
111 static struct epoch_ticks last_comms_clock; | |
112 | |
113 // boolean flags | |
114 static uint8_t need_measurement; | |
115 static uint8_t need_comms; | |
116 static uint8_t uart_enabled; | |
117 static uint8_t stay_awake; | |
118 static uint8_t button_pressed; | |
119 | |
120 // counts down from WAKE_SECS to 0, goes to deep sleep when hits 0 | |
121 static uint8_t comms_timeout; | |
122 | |
123 static uint8_t readpos; | |
124 static char readbuf[30]; | |
125 static uint8_t have_cmd; | |
126 | |
127 static uint8_t n_sensors; | |
128 static uint8_t sensor_id[MAX_SENSORS][ID_LEN]; | |
129 | |
130 static int16_t last_fridge = DS18X20_INVALID_DECICELSIUS; | |
131 static int16_t last_wort = DS18X20_INVALID_DECICELSIUS; | |
132 static struct epoch_ticks fridge_off_clock = {0}; | |
133 static struct epoch_ticks fridge_on_clock = {0}; | |
134 static struct epoch_ticks wort_valid_clock = {0}; | |
135 | |
136 int uart_putchar(char c, FILE *stream); | |
137 static void long_delay(int ms); | |
138 static void blink(); | |
139 static uint16_t adc_vcc(); | |
140 | |
141 static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL, | |
142 _FDEV_SETUP_WRITE); | |
143 | |
144 static uint16_t crc_out; | |
145 static FILE _crc_stdout = FDEV_SETUP_STREAM(uart_putchar, NULL, | |
146 _FDEV_SETUP_WRITE); | |
147 // convenience | |
148 static FILE *crc_stdout = &_crc_stdout; | |
149 | |
150 | |
151 // thanks to http://projectgus.com/2010/07/eeprom-access-with-arduino/ | |
152 #define eeprom_read_to(dst_p, eeprom_field, dst_size) eeprom_read_block((dst_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (dst_size)) | |
153 #define eeprom_read(dst, eeprom_field) eeprom_read_to((&dst), eeprom_field, sizeof(dst)) | |
154 #define eeprom_write_from(src_p, eeprom_field, src_size) eeprom_write_block((src_p), (void *)offsetof(struct __eeprom_data, eeprom_field), (src_size)) | |
155 #define eeprom_write(src, eeprom_field) { eeprom_write_from(&src, eeprom_field, sizeof(src)); } | |
156 | |
157 #define EXPECT_MAGIC 0x67c9 | |
158 | |
159 struct __attribute__ ((__packed__)) __eeprom_data { | |
160 uint16_t measure_wake; | |
161 uint16_t comms_wake; | |
162 uint8_t wake_secs; | |
163 | |
164 int16_t fridge_setpoint; // decidegrees | |
165 uint16_t fridge_difference; // decidegrees | |
166 uint16_t fridge_delay; | |
167 | |
168 uint16_t overshoot_delay; | |
169 uint8_t overshoot_factor; // decidegrees | |
170 | |
171 #if 0 | |
172 static uint8_t wort_id[ID_LEN]; | |
173 static uint8_t fridge_id[ID_LEN]; | |
174 #endif | |
175 | |
176 uint16_t magic; | |
177 }; | |
178 | |
179 static const uint8_t fridge_id[ID_LEN] = | |
180 {0x28,0xCE,0xB2,0x1A,0x03,0x00,0x00,0x99}; | |
181 static const uint8_t wort_id[ID_LEN] = | |
182 {0x28,0x49,0xBC,0x1A,0x03,0x00,0x00,0x54}; | |
183 | |
184 static void deep_sleep(); | |
185 | |
186 // 0 or 1 | |
187 static uint8_t | |
188 is_fridge_on() | |
189 { | |
190 if (PORT_FRIDGE & _BV(PIN_FRIDGE)) | |
191 { | |
192 return 1; | |
193 } | |
194 else | |
195 { | |
196 return 0; | |
197 } | |
198 } | |
199 | |
200 // Very first setup | |
201 static void | |
202 setup_chip() | |
203 { | |
204 cli(); | |
205 | |
206 // stop watchdog timer (might have been used to cause a reset) | |
207 wdt_reset(); | |
208 MCUSR &= ~_BV(WDRF); | |
209 WDTCSR |= _BV(WDCE) | _BV(WDE); | |
210 WDTCSR = 0; | |
211 | |
212 // Set clock to 2mhz | |
213 CLKPR = _BV(CLKPCE); | |
214 // divide by 4 | |
215 CLKPR = _BV(CLKPS1); | |
216 | |
217 // enable pullups | |
218 PORTB = 0xff; // XXX change when using SPI | |
219 PORTD = 0xff; | |
220 PORTC = 0xff; | |
221 | |
222 // 3.3v power for bluetooth and SD | |
223 DDR_LED |= _BV(PIN_LED); | |
224 DDR_SHDN |= _BV(PIN_SHDN); | |
225 | |
226 PORT_FRIDGE &= ~_BV(PIN_FRIDGE); | |
227 DDR_FRIDGE |= _BV(PIN_FRIDGE); | |
228 | |
229 // set pullup | |
230 PORTD |= _BV(PD2); | |
231 // INT0 setup | |
232 EICRA = (1<<ISC01); // falling edge - data sheet says it won't work? | |
233 EIMSK = _BV(INT0); | |
234 | |
235 // comparator disable | |
236 ACSR = _BV(ACD); | |
237 | |
238 // disable adc pin input buffers | |
239 DIDR0 = 0x3F; // acd0-adc5 | |
240 DIDR1 = (1<<AIN1D)|(1<<AIN0D); // ain0/ain1 | |
241 | |
242 sei(); | |
243 } | |
244 | |
245 static void | |
246 set_aux_power(uint8_t on) | |
247 { | |
248 if (on) | |
249 { | |
250 PORT_SHDN &= ~_BV(PIN_SHDN); | |
251 } | |
252 else | |
253 { | |
254 PORT_SHDN |= _BV(PIN_SHDN); | |
255 } | |
256 } | |
257 | |
258 static void | |
259 get_epoch_ticks(struct epoch_ticks *t) | |
260 { | |
261 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
262 { | |
263 t->ticks = clock_epoch; | |
264 t->rem = TCNT2; | |
265 } | |
266 } | |
267 | |
268 static void | |
269 set_measurement(uint8_t sensor, uint16_t measurement, uint16_t reading) | |
270 { | |
271 measurements[sensor*max_measurements + measurement] = reading; | |
272 } | |
273 | |
274 static uint16_t | |
275 get_measurement(uint8_t sensor, uint16_t measurement) | |
276 { | |
277 return measurements[sensor*max_measurements + measurement]; | |
278 } | |
279 | |
280 static void | |
281 setup_tick_counter() | |
282 { | |
283 // set up counter2. | |
284 // COM21 COM20 Set OC2 on Compare Match (p116) | |
285 // WGM21 Clear counter on compare | |
286 //TCCR2A = _BV(COM2A1) | _BV(COM2A0) | _BV(WGM21); | |
287 // toggle on match | |
288 TCCR2A = _BV(COM2A0); | |
289 // CS22 CS21 CS20 clk/1024 | |
290 TCCR2B = _BV(CS22) | _BV(CS21) | _BV(CS20); | |
291 // set async mode | |
292 ASSR |= _BV(AS2); | |
293 TCNT2 = 0; | |
294 OCR2A = SLEEP_COMPARE; | |
295 // interrupt | |
296 TIMSK2 = _BV(OCIE2A); | |
297 } | |
298 | |
299 static void | |
300 uart_on() | |
301 { | |
302 // Power reduction register | |
303 PRR &= ~_BV(PRUSART0); | |
304 | |
305 // All of this needs to be done each time after turning off the PRR | |
306 // baud rate | |
307 UBRR0H = (unsigned char)(UBRR >> 8); | |
308 UBRR0L = (unsigned char)UBRR; | |
309 // set 2x clock, improves accuracy of UBRR | |
310 UCSR0A |= _BV(U2X0); | |
311 UCSR0B = _BV(RXCIE0) | _BV(RXEN0) | _BV(TXEN0); | |
312 //8N1 | |
313 UCSR0C = _BV(UCSZ01) | _BV(UCSZ00); | |
314 uart_enabled = 1; | |
315 } | |
316 | |
317 static void | |
318 uart_off() | |
319 { | |
320 // Turn off interrupts and disable tx/rx | |
321 UCSR0B = 0; | |
322 uart_enabled = 0; | |
323 | |
324 // Power reduction register | |
325 PRR |= _BV(PRUSART0); | |
326 } | |
327 | |
328 int | |
329 uart_putchar(char c, FILE *stream) | |
330 { | |
331 if (!uart_enabled) | |
332 { | |
333 return EOF; | |
334 } | |
335 // XXX could perhaps sleep in the loop for power. | |
336 if (c == '\n') | |
337 { | |
338 loop_until_bit_is_set(UCSR0A, UDRE0); | |
339 UDR0 = '\r'; | |
340 } | |
341 loop_until_bit_is_set(UCSR0A, UDRE0); | |
342 UDR0 = c; | |
343 if (stream == crc_stdout) | |
344 { | |
345 crc_out = _crc_ccitt_update(crc_out, c); | |
346 } | |
347 if (c == '\r') | |
348 { | |
349 loop_until_bit_is_set(UCSR0A, UDRE0); | |
350 UDR0 = '\n'; | |
351 if (stream == crc_stdout) | |
352 { | |
353 crc_out = _crc_ccitt_update(crc_out, '\n'); | |
354 } | |
355 } | |
356 return (unsigned char)c; | |
357 } | |
358 | |
359 static void | |
360 cmd_fetch() | |
361 { | |
362 crc_out = 0; | |
363 | |
364 fprintf_P(crc_stdout, PSTR("START\n")); | |
365 { | |
366 struct epoch_ticks now; | |
367 get_epoch_ticks(&now); | |
368 fprintf_P(crc_stdout, PSTR("now=%lu\n"), now.ticks); | |
369 fprintf_P(crc_stdout, PSTR("now_rem=%hhu\n"), now.rem); | |
370 } | |
371 fprintf_P(crc_stdout, PSTR("time_step=%hu\n"), measure_wake); | |
372 fprintf_P(crc_stdout, PSTR("first_time=%lu\n"), first_measurement_clock.ticks); | |
373 fprintf_P(crc_stdout, PSTR("first_time_rem=%hhu\n"), first_measurement_clock.rem); | |
374 fprintf_P(crc_stdout, PSTR("last_time=%lu\n"), last_measurement_clock.ticks); | |
375 fprintf_P(crc_stdout, PSTR("last_time_rem=%hhu\n"), last_measurement_clock.rem); | |
376 fprintf_P(crc_stdout, PSTR("comms_time=%lu\n"), last_comms_clock.ticks); | |
377 fprintf_P(crc_stdout, PSTR("comms_time_rem=%hhu\n"), last_comms_clock.rem); | |
378 fprintf_P(crc_stdout, PSTR("voltage=%hu\n"), adc_vcc()); | |
379 fprintf_P(crc_stdout, PSTR("measure=%hu\n"), measure_wake); | |
380 fprintf_P(crc_stdout, PSTR("comms=%hu\n"), comms_wake); | |
381 fprintf_P(crc_stdout, PSTR("wake=%hhu\n"), wake_secs); | |
382 fprintf_P(crc_stdout, PSTR("fridge=%.1f\n"), fridge_setpoint/10.0); | |
383 fprintf_P(crc_stdout, PSTR("fridge_diff=%.1f\n"), fridge_difference/10.0); | |
384 fprintf_P(crc_stdout, PSTR("fridge_delay=%hu\n"), fridge_delay); | |
385 fprintf_P(crc_stdout, PSTR("overshoot_factor=%.1f\n"), overshoot_factor/10.0); | |
386 fprintf_P(crc_stdout, PSTR("overshoot_delay=%hu\n"), overshoot_delay); | |
387 fprintf_P(crc_stdout, PSTR("fridge_status=%hhu\n"), is_fridge_on()); | |
388 fprintf_P(crc_stdout, PSTR("fridge_last_on=%lu\n"), fridge_on_clock.ticks); | |
389 fprintf_P(crc_stdout, PSTR("fridge_last_off=%lu\n"), fridge_off_clock.ticks); | |
390 fprintf_P(crc_stdout, PSTR("last_fridge=%hu\n"), last_fridge); | |
391 fprintf_P(crc_stdout, PSTR("last_wort=%hu\n"), last_wort); | |
392 fprintf_P(crc_stdout, PSTR("tick_secs=%d\n"), TICK); | |
393 fprintf_P(crc_stdout, PSTR("tick_wake=%d\n"), SLEEP_COMPARE); | |
394 fprintf_P(crc_stdout, PSTR("maxsens=%hhu\n"), MAX_SENSORS); | |
395 fprintf_P(crc_stdout, PSTR("totalmeas=%hu\n"), TOTAL_MEASUREMENTS); | |
396 fprintf_P(crc_stdout, PSTR("sensors=%hhu\n"), n_sensors); | |
397 for (uint8_t s = 0; s < n_sensors; s++) | |
398 { | |
399 fprintf_P(crc_stdout, PSTR("sensor_id%hhu="), s); | |
400 printhex(sensor_id[s], ID_LEN, crc_stdout); | |
401 fputc('\n', crc_stdout); | |
402 } | |
403 fprintf_P(crc_stdout, PSTR("measurements=%hu\n"), n_measurements); | |
404 for (uint16_t n = 0; n < n_measurements; n++) | |
405 { | |
406 fprintf_P(crc_stdout, PSTR("meas%hu="), n); | |
407 for (uint8_t s = 0; s < n_sensors; s++) | |
408 { | |
409 fprintf_P(crc_stdout, PSTR(" %04hx"), get_measurement(s, n)); | |
410 } | |
411 fputc('\n', crc_stdout); | |
412 } | |
413 fprintf_P(crc_stdout, PSTR("END\n")); | |
414 fprintf_P(stdout, PSTR("CRC=%hu\n"), crc_out); | |
415 } | |
416 | |
417 static void | |
418 cmd_clear() | |
419 { | |
420 n_measurements = 0; | |
421 printf_P(PSTR("cleared\n")); | |
422 } | |
423 | |
424 static void | |
425 cmd_btoff() | |
426 { | |
427 uint8_t rem; | |
428 uint16_t count_copy; | |
429 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
430 { | |
431 count_copy = comms_count; | |
432 rem = TCNT2; | |
433 } | |
434 printf_P(PSTR("next_wake=%hu,"), comms_wake-count_copy); | |
435 printf_P(PSTR("rem=%hhu,"), rem); | |
436 printf_P(PSTR("tick_secs=%hhu,"), TICK); | |
437 printf_P(PSTR("tick_wake=%hhu\n"), SLEEP_COMPARE); | |
438 _delay_ms(100); | |
439 comms_timeout = 0; | |
440 stay_awake = 0; | |
441 } | |
442 | |
443 static void | |
444 cmd_reset() | |
445 { | |
446 printf_P(PSTR("reset\n")); | |
447 _delay_ms(100); | |
448 cli(); // disable interrupts | |
449 wdt_enable(WDTO_15MS); // enable watchdog | |
450 while(1); // wait for watchdog to reset processor | |
451 } | |
452 | |
453 static void | |
454 cmd_measure() | |
455 { | |
456 printf_P(PSTR("measuring\n")); | |
457 need_measurement = 1; | |
458 } | |
459 | |
460 static void | |
461 cmd_sensors() | |
462 { | |
463 uint8_t ret = simple_ds18b20_start_meas(NULL); | |
464 printf_P(PSTR("All sensors, ret %hhu, waiting...\n"), ret); | |
465 long_delay(DS18B20_TCONV_12BIT); | |
466 simple_ds18b20_read_all(); | |
467 } | |
468 | |
469 static void | |
470 init_sensors() | |
471 { | |
472 uint8_t id[OW_ROMCODE_SIZE]; | |
473 printf_P(PSTR("init sensors\n")); | |
474 ow_reset(); | |
475 for( uint8_t diff = OW_SEARCH_FIRST; diff != OW_LAST_DEVICE; ) | |
476 { | |
477 diff = ow_rom_search( diff, &id[0] ); | |
478 if( diff == OW_PRESENCE_ERR ) { | |
479 printf_P( PSTR("No Sensor found\r") ); | |
480 return; | |
481 } | |
482 | |
483 if( diff == OW_DATA_ERR ) { | |
484 printf_P( PSTR("Bus Error\r") ); | |
485 return; | |
486 } | |
487 | |
488 if (n_sensors < MAX_SENSORS) | |
489 { | |
490 memcpy(sensor_id[n_sensors], id, ID_LEN); | |
491 printf_P(PSTR("Added sensor %hhu : "), n_sensors); | |
492 printhex(id, ID_LEN, stdout); | |
493 putchar('\n'); | |
494 n_sensors++; | |
495 } | |
496 else | |
497 { | |
498 printf_P(PSTR("Too many sensors\n")); | |
499 } | |
500 } | |
501 | |
502 max_measurements = TOTAL_MEASUREMENTS / n_sensors; | |
503 } | |
504 | |
505 static void | |
506 load_params() | |
507 { | |
508 uint16_t magic; | |
509 eeprom_read(magic, magic); | |
510 if (magic == EXPECT_MAGIC) | |
511 { | |
512 eeprom_read(measure_wake, measure_wake); | |
513 eeprom_read(comms_wake, comms_wake); | |
514 eeprom_read(wake_secs, wake_secs); | |
515 eeprom_read(fridge_setpoint, fridge_setpoint); | |
516 eeprom_read(fridge_difference, fridge_difference); | |
517 eeprom_read(fridge_delay, fridge_delay); | |
518 eeprom_read(overshoot_delay, overshoot_delay); | |
519 eeprom_read(overshoot_factor, overshoot_factor); | |
520 } | |
521 } | |
522 | |
523 static void | |
524 cmd_get_params() | |
525 { | |
526 printf_P(PSTR("measure %hu\n"), measure_wake); | |
527 printf_P(PSTR("comms %hu\n"), comms_wake); | |
528 printf_P(PSTR("wake %hhu\n"), wake_secs); | |
529 printf_P(PSTR("tick %d\n"), TICK); | |
530 printf_P(PSTR("fridge %.1fº\n"), fridge_setpoint / 10.0f); | |
531 printf_P(PSTR("fridge difference %.1fº\n"), fridge_difference / 10.0f); | |
532 printf_P(PSTR("fridge_delay %hu\n"), fridge_delay); | |
533 printf_P(PSTR("overshoot factor %.1fº\n"), overshoot_factor / 10.0f); | |
534 printf_P(PSTR("overshoot delay %hu\n"), overshoot_delay); | |
535 printf_P(PSTR("sensors %hhu (%hhu)\n"), | |
536 n_sensors, MAX_SENSORS); | |
537 printf_P(PSTR("meas %hu (%hu)\n"), | |
538 max_measurements, TOTAL_MEASUREMENTS); | |
539 } | |
540 | |
541 static void | |
542 cmd_set_params(const char *params) | |
543 { | |
544 uint16_t new_measure_wake; | |
545 uint16_t new_comms_wake; | |
546 uint8_t new_wake_secs; | |
547 int ret = sscanf_P(params, PSTR("%hu %hu %hhu"), | |
548 &new_measure_wake, &new_comms_wake, &new_wake_secs); | |
549 | |
550 if (ret != 3) | |
551 { | |
552 printf_P(PSTR("Bad values\n")); | |
553 } | |
554 else | |
555 { | |
556 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
557 { | |
558 eeprom_write(new_measure_wake, measure_wake); | |
559 eeprom_write(new_comms_wake, comms_wake); | |
560 eeprom_write(new_wake_secs, wake_secs); | |
561 uint16_t magic = EXPECT_MAGIC; | |
562 eeprom_write(magic, magic); | |
563 } | |
564 printf_P(PSTR("set_params for next boot\n")); | |
565 printf_P(PSTR("measure %hu comms %hu wake %hhu\n"), | |
566 new_measure_wake, new_comms_wake, new_wake_secs); | |
567 } | |
568 } | |
569 | |
570 // returns true if eeprom was written | |
571 static bool | |
572 set_initial_eeprom() | |
573 { | |
574 uint16_t magic; | |
575 eeprom_read(magic, magic); | |
576 if (magic == EXPECT_MAGIC) | |
577 { | |
578 return false; | |
579 } | |
580 | |
581 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
582 { | |
583 eeprom_write(measure_wake, measure_wake); | |
584 eeprom_write(comms_wake, comms_wake); | |
585 eeprom_write(wake_secs, wake_secs); | |
586 eeprom_write(fridge_setpoint, fridge_setpoint); | |
587 eeprom_write(fridge_difference, fridge_difference); | |
588 eeprom_write(fridge_delay, fridge_delay); | |
589 eeprom_write(overshoot_delay, overshoot_delay); | |
590 eeprom_write(overshoot_factor, overshoot_factor); | |
591 magic = EXPECT_MAGIC; | |
592 eeprom_write(magic, magic); | |
593 } | |
594 | |
595 return true; | |
596 } | |
597 | |
598 static void | |
599 cmd_set_fridge_setpoint(char *params) | |
600 { | |
601 float new_f = atof(params); | |
602 if (new_f < 2 || new_f > 30) | |
603 { | |
604 printf_P(PSTR("Bad fridge value %f\n"), new_f); | |
605 return; | |
606 } | |
607 | |
608 int16_t old_setpoint = fridge_setpoint; | |
609 | |
610 fridge_setpoint = new_f * 10; | |
611 bool written = set_initial_eeprom(); | |
612 if (!written) | |
613 { | |
614 if (old_setpoint != fridge_setpoint) | |
615 { | |
616 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
617 { | |
618 eeprom_write(fridge_setpoint, fridge_setpoint); | |
619 } | |
620 } | |
621 } | |
622 printf_P(PSTR("old fridge %.1fº new fridge %.1fº\n"), | |
623 old_setpoint / 10.0f, fridge_setpoint / 10.0f); | |
624 } | |
625 | |
626 static void | |
627 cmd_set_fridge_difference(char *params) | |
628 { | |
629 float new_f = atof(params); | |
630 if (new_f < 0 || new_f > 30) | |
631 { | |
632 printf_P(PSTR("Bad fridge value %f\n"), new_f); | |
633 return; | |
634 } | |
635 | |
636 fridge_difference = new_f * 10; | |
637 bool written = set_initial_eeprom(); | |
638 if (!written) | |
639 { | |
640 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
641 { | |
642 eeprom_write(fridge_difference, fridge_difference); | |
643 } | |
644 } | |
645 printf_P(PSTR("new fridge difference %.1fº\n"), fridge_difference / 10.0f); | |
646 } | |
647 | |
648 static void | |
649 cmd_set_fridge_delay(char *params) | |
650 { | |
651 uint16_t new_delay = atoi(params); | |
652 if (new_delay < 5) | |
653 { | |
654 printf_P(PSTR("Bad fridge delay %d\n"), new_delay); | |
655 return; | |
656 } | |
657 | |
658 fridge_delay = new_delay; | |
659 bool written = set_initial_eeprom(); | |
660 if (!written) | |
661 { | |
662 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
663 { | |
664 eeprom_write(fridge_delay, fridge_delay); | |
665 } | |
666 } | |
667 printf_P(PSTR("new fridge delay %hu\n"), fridge_delay); | |
668 } | |
669 | |
670 static void | |
671 cmd_set_overshoot_factor(char *params) | |
672 { | |
673 float new_f = atof(params); | |
674 if (new_f <= 0 || new_f > 20) | |
675 { | |
676 printf_P(PSTR("Bad overshoot factor %f\n"), new_f); | |
677 return; | |
678 } | |
679 | |
680 uint8_t old = overshoot_factor; | |
681 | |
682 overshoot_factor = new_f * 10; | |
683 bool written = set_initial_eeprom(); | |
684 if (!written) | |
685 { | |
686 if (old != overshoot_factor) | |
687 { | |
688 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
689 { | |
690 eeprom_write(overshoot_factor, overshoot_factor); | |
691 } | |
692 } | |
693 } | |
694 printf_P(PSTR("old factor %.1fº new factor %.1fº\n"), | |
695 old / 10.0f, overshoot_factor / 10.0f); | |
696 } | |
697 | |
698 static void | |
699 cmd_set_overshoot_delay(char *params) | |
700 { | |
701 uint16_t new_delay = atoi(params); | |
702 if (new_delay < 5) | |
703 { | |
704 printf_P(PSTR("Bad overshoot delay %d\n"), new_delay); | |
705 return; | |
706 } | |
707 | |
708 overshoot_delay = new_delay; | |
709 bool written = set_initial_eeprom(); | |
710 if (!written) | |
711 { | |
712 ATOMIC_BLOCK(ATOMIC_RESTORESTATE) | |
713 { | |
714 eeprom_write(overshoot_delay, overshoot_delay); | |
715 } | |
716 } | |
717 printf_P(PSTR("new overshoot delay %hu\n"), overshoot_delay); | |
718 } | |
719 | |
720 static void | |
721 cmd_awake() | |
722 { | |
723 stay_awake = 1; | |
724 printf_P(PSTR("awake\n")); | |
725 } | |
726 | |
727 static void | |
728 read_handler() | |
729 { | |
730 if (strcmp_P(readbuf, PSTR("fetch")) == 0) | |
731 { | |
732 cmd_fetch(); | |
733 } | |
734 else if (strcmp_P(readbuf, PSTR("clear")) == 0) | |
735 { | |
736 cmd_clear(); | |
737 } | |
738 else if (strcmp_P(readbuf, PSTR("btoff")) == 0) | |
739 { | |
740 cmd_btoff(); | |
741 } | |
742 else if (strcmp_P(readbuf, PSTR("measure")) == 0) | |
743 { | |
744 cmd_measure(); | |
745 } | |
746 else if (strcmp_P(readbuf, PSTR("sensors")) == 0) | |
747 { | |
748 cmd_sensors(); | |
749 } | |
750 else if (strcmp_P(readbuf, PSTR("get_params")) == 0) | |
751 { | |
752 cmd_get_params(); | |
753 } | |
754 else if (strncmp_P(readbuf, PSTR("set_params "), 11) == 0) | |
755 { | |
756 cmd_set_params(&readbuf[11]); | |
757 } | |
758 else if (strcmp_P(readbuf, PSTR("awake")) == 0) | |
759 { | |
760 cmd_awake(); | |
761 } | |
762 else if (strncmp_P(readbuf, PSTR("fridge_setpoint "), 16) == 0) | |
763 { | |
764 cmd_set_fridge_setpoint(&readbuf[16]); | |
765 } | |
766 else if (strncmp_P(readbuf, PSTR("fridge_diff "), 12) == 0) | |
767 { | |
768 cmd_set_fridge_difference(&readbuf[12]); | |
769 } | |
770 else if (strncmp_P(readbuf, PSTR("fridge_delay "), 13) == 0) | |
771 { | |
772 cmd_set_fridge_delay(&readbuf[13]); | |
773 } | |
774 else if (strncmp_P(readbuf, PSTR("overshoot_delay "), 16) == 0) | |
775 { | |
776 cmd_set_overshoot_delay(&readbuf[16]); | |
777 } | |
778 else if (strncmp_P(readbuf, PSTR("overshoot_factor "), 17) == 0) | |
779 { | |
780 cmd_set_overshoot_factor(&readbuf[17]); | |
781 } | |
782 else if (strcmp_P(readbuf, PSTR("reset")) == 0) | |
783 { | |
784 cmd_reset(); | |
785 } | |
786 else | |
787 { | |
788 printf_P(PSTR("Bad command '%s'\n"), readbuf); | |
789 } | |
790 } | |
791 | |
792 ISR(INT0_vect) | |
793 { | |
794 button_pressed = 1; | |
795 blink(); | |
796 _delay_ms(100); | |
797 blink(); | |
798 } | |
799 | |
800 | |
801 ISR(USART_RX_vect) | |
802 { | |
803 char c = UDR0; | |
804 #ifdef HAVE_UART_ECHO | |
805 uart_putchar(c, NULL); | |
806 #endif | |
807 if (c == '\r' || c == '\n') | |
808 { | |
809 if (readpos > 0) | |
810 { | |
811 readbuf[readpos] = '\0'; | |
812 have_cmd = 1; | |
813 readpos = 0; | |
814 } | |
815 } | |
816 else | |
817 { | |
818 readbuf[readpos] = c; | |
819 readpos++; | |
820 if (readpos >= sizeof(readbuf)) | |
821 { | |
822 readpos = 0; | |
823 } | |
824 } | |
825 } | |
826 | |
827 ISR(TIMER2_COMPA_vect) | |
828 { | |
829 TCNT2 = 0; | |
830 measure_count += TICK; | |
831 comms_count += TICK; | |
832 | |
833 clock_epoch += TICK; | |
834 | |
835 if (comms_timeout != 0) | |
836 { | |
837 comms_timeout -= TICK; | |
838 } | |
839 | |
840 if (measure_count >= measure_wake) | |
841 { | |
842 measure_count = 0; | |
843 need_measurement = 1; | |
844 } | |
845 | |
846 if (comms_count >= comms_wake) | |
847 { | |
848 comms_count = 0; | |
849 need_comms = 1; | |
850 } | |
851 } | |
852 | |
853 static void | |
854 deep_sleep() | |
855 { | |
856 // p119 of manual | |
857 OCR2A = SLEEP_COMPARE; | |
858 loop_until_bit_is_clear(ASSR, OCR2AUB); | |
859 | |
860 set_sleep_mode(SLEEP_MODE_PWR_SAVE); | |
861 sleep_mode(); | |
862 } | |
863 | |
864 static void | |
865 idle_sleep() | |
866 { | |
867 set_sleep_mode(SLEEP_MODE_IDLE); | |
868 sleep_mode(); | |
869 } | |
870 | |
871 static uint16_t | |
872 adc_vcc() | |
873 { | |
874 PRR &= ~_BV(PRADC); | |
875 | |
876 // /16 prescaler | |
877 ADCSRA = _BV(ADEN) | _BV(ADPS2); | |
878 | |
879 // set to measure 1.1 reference | |
880 ADMUX = _BV(REFS0) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); | |
881 // average a number of samples | |
882 uint16_t sum = 0; | |
883 uint8_t num = 0; | |
884 for (uint8_t n = 0; n < 20; n++) | |
885 { | |
886 ADCSRA |= _BV(ADSC); | |
887 loop_until_bit_is_clear(ADCSRA, ADSC); | |
888 | |
889 uint8_t low_11 = ADCL; | |
890 uint8_t high_11 = ADCH; | |
891 uint16_t val = low_11 + (high_11 << 8); | |
892 | |
893 if (n >= 4) | |
894 { | |
895 sum += val; | |
896 num++; | |
897 } | |
898 } | |
899 ADCSRA = 0; | |
900 PRR |= _BV(PRADC); | |
901 | |
902 //float res_volts = 1.1 * 1024 * num / sum; | |
903 //return 1000 * res_volts; | |
904 return ((uint32_t)1100*1024*num) / sum; | |
905 } | |
906 | |
907 static void | |
908 do_fridge() | |
909 { | |
910 struct epoch_ticks now; | |
911 get_epoch_ticks(&now); | |
912 uint32_t off_time = now.ticks - fridge_off_clock.ticks; | |
913 bool wort_valid = last_wort != DS18X20_INVALID_DECICELSIUS; | |
914 bool fridge_valid = last_fridge != DS18X20_INVALID_DECICELSIUS; | |
915 | |
916 int16_t wort_max = fridge_setpoint + fridge_difference; | |
917 int16_t wort_min = fridge_setpoint; | |
918 | |
919 // the fridge min/max only apply if the wort sensor is broken | |
920 int16_t fridge_min = fridge_setpoint - FRIDGE_AIR_MIN_RANGE; | |
921 int16_t fridge_max = fridge_setpoint + FRIDGE_AIR_MAX_RANGE; | |
922 | |
923 uint8_t fridge_on = PORT_FRIDGE & _BV(PIN_FRIDGE); | |
924 printf_P(PSTR("last_wort %hd (%hd, %hd), last_fridge %hd (%hd, %hd), setpoint %hd, diff %hd, fridge_on %hhu\n"), | |
925 last_wort, wort_min, wort_max, | |
926 last_fridge, fridge_min, fridge_max, | |
927 fridge_setpoint, fridge_difference, fridge_on); | |
928 | |
929 if (off_time < fridge_delay) | |
930 { | |
931 printf_P(PSTR("waiting for fridge delay current %hu, wait %hu\n"), | |
932 off_time, fridge_delay); | |
933 return; | |
934 } | |
935 | |
936 // handle failure of the wort sensor. if it is a short (intermittent?) | |
937 // failure we wait until it has been broken for a period of time | |
938 // (WORT_INVALID_TIME) before doing anything. | |
939 if (wort_valid) | |
940 { | |
941 wort_valid_clock = now; | |
942 } | |
943 else | |
944 { | |
945 printf_P(PSTR("wort sensor is invalid\n")); | |
946 uint32_t invalid_time = now.ticks - wort_valid_clock.ticks; | |
947 if (invalid_time < WORT_INVALID_TIME) | |
948 { | |
949 printf("only been invalid for %ld, waiting\n", invalid_time); | |
950 return; | |
951 } | |
952 } | |
953 | |
954 if (!fridge_valid) | |
955 { | |
956 printf_P(PSTR("fridge sensor is invalid\n")); | |
957 } | |
958 | |
959 if (fridge_on) | |
960 { | |
961 bool turn_off = false; | |
962 uint16_t on_time = now.ticks - fridge_on_clock.ticks; | |
963 | |
964 uint16_t overshoot = 0; | |
965 if (on_time > overshoot_delay) | |
966 { | |
967 overshoot = overshoot_factor * MIN(OVERSHOOT_MAX_DIV, on_time) / OVERSHOOT_MAX_DIV; | |
968 } | |
969 | |
970 printf_P(PSTR("on_time %hu, overshoot %hu\n"), on_time, overshoot); | |
971 | |
972 // wort has cooled enough. will probably cool a bit more by itself | |
973 if (wort_valid) | |
974 { | |
975 if ((last_wort - overshoot) < fridge_setpoint) | |
976 { | |
977 printf_P(PSTR("wort has cooled enough, overshoot %hu on_time %hu\n"), overshoot, on_time); | |
978 turn_off = true; | |
979 } | |
980 } | |
981 else | |
982 { | |
983 if (fridge_valid && last_fridge < fridge_min) | |
984 { | |
985 printf_P(PSTR("fridge off fallback\n")); | |
986 turn_off = true; | |
987 } | |
988 } | |
989 | |
990 if (turn_off) | |
991 { | |
992 // too cold, turn off | |
993 printf_P(PSTR("Turning fridge off\n")); | |
994 PORT_FRIDGE &= ~_BV(PIN_FRIDGE); | |
995 fridge_off_clock = now; | |
996 } | |
997 } | |
998 else | |
999 { | |
1000 bool turn_on = false; | |
1001 | |
1002 if (wort_valid) | |
1003 { | |
1004 if (last_wort >= wort_max) | |
1005 { | |
1006 printf_P(PSTR("wort is too hot\n")); | |
1007 turn_on = true; | |
1008 } | |
1009 } | |
1010 else | |
1011 { | |
1012 if (fridge_valid && last_fridge >= fridge_max) | |
1013 { | |
1014 printf_P(PSTR("fridge on fallback\n")); | |
1015 turn_on = true; | |
1016 } | |
1017 } | |
1018 | |
1019 if (turn_on) | |
1020 { | |
1021 // too hot, turn on | |
1022 printf_P(PSTR("Turning fridge on\n")); | |
1023 PORT_FRIDGE |= _BV(PIN_FRIDGE); | |
1024 fridge_on_clock = now; | |
1025 } | |
1026 } | |
1027 } | |
1028 | |
1029 static void | |
1030 do_measurement() | |
1031 { | |
1032 blink(); | |
1033 | |
1034 /* Take the timer here since deep_sleep() below could take 6 seconds */ | |
1035 get_epoch_ticks(&last_measurement_clock); | |
1036 if (n_measurements == 0) | |
1037 { | |
1038 first_measurement_clock = last_measurement_clock; | |
1039 } | |
1040 | |
1041 simple_ds18b20_start_meas(NULL); | |
1042 _delay_ms(DS18B20_TCONV_12BIT); | |
1043 | |
1044 if (n_measurements == max_measurements) | |
1045 { | |
1046 n_measurements = 0; | |
1047 } | |
1048 | |
1049 for (uint8_t s = 0; s < n_sensors; s++) | |
1050 { | |
1051 uint16_t reading; | |
1052 uint8_t ret = simple_ds18b20_read_raw(sensor_id[s], &reading); | |
1053 if (ret != DS18X20_OK) | |
1054 { | |
1055 reading = VALUE_BROKEN; | |
1056 } | |
1057 set_measurement(s, n_measurements, reading); | |
1058 | |
1059 if (memcmp(sensor_id[s], fridge_id, sizeof(fridge_id)) == 0) | |
1060 { | |
1061 last_fridge = ds18b20_raw16_to_decicelsius(reading); | |
1062 } | |
1063 if (memcmp(sensor_id[s], wort_id, sizeof(wort_id)) == 0) | |
1064 { | |
1065 last_wort = ds18b20_raw16_to_decicelsius(reading); | |
1066 } | |
1067 } | |
1068 | |
1069 n_measurements++; | |
1070 } | |
1071 | |
1072 static void | |
1073 do_comms() | |
1074 { | |
1075 get_epoch_ticks(&last_comms_clock); | |
1076 | |
1077 // turn on bluetooth | |
1078 set_aux_power(1); | |
1079 // avoid receiving rubbish, perhaps | |
1080 _delay_ms(50); | |
1081 uart_on(); | |
1082 | |
1083 // write sd card here? same 3.3v regulator... | |
1084 | |
1085 for (comms_timeout = wake_secs; | |
1086 comms_timeout > 0 || stay_awake; | |
1087 ) | |
1088 { | |
1089 if (need_measurement) | |
1090 { | |
1091 need_measurement = 0; | |
1092 do_measurement(); | |
1093 do_fridge(); | |
1094 continue; | |
1095 } | |
1096 | |
1097 if (have_cmd) | |
1098 { | |
1099 have_cmd = 0; | |
1100 read_handler(); | |
1101 continue; | |
1102 } | |
1103 | |
1104 // wait for commands from the master | |
1105 idle_sleep(); | |
1106 } | |
1107 | |
1108 uart_off(); | |
1109 // in case bluetooth takes time to flush | |
1110 _delay_ms(100); | |
1111 set_aux_power(0); | |
1112 } | |
1113 | |
1114 static void | |
1115 blink() | |
1116 { | |
1117 PORT_LED &= ~_BV(PIN_LED); | |
1118 _delay_ms(1); | |
1119 PORT_LED |= _BV(PIN_LED); | |
1120 } | |
1121 | |
1122 static void | |
1123 long_delay(int ms) | |
1124 { | |
1125 int iter = ms / 100; | |
1126 | |
1127 for (int i = 0; i < iter; i++) | |
1128 { | |
1129 _delay_ms(100); | |
1130 } | |
1131 } | |
1132 | |
1133 ISR(BADISR_vect) | |
1134 { | |
1135 //uart_on(); | |
1136 printf_P(PSTR("Bad interrupt\n")); | |
1137 } | |
1138 | |
1139 int main(void) | |
1140 { | |
1141 setup_chip(); | |
1142 blink(); | |
1143 | |
1144 set_aux_power(0); | |
1145 | |
1146 stdout = &mystdout; | |
1147 uart_on(); | |
1148 | |
1149 printf(PSTR("Started.\n")); | |
1150 | |
1151 load_params(); | |
1152 | |
1153 init_sensors(); | |
1154 | |
1155 uart_off(); | |
1156 | |
1157 // turn off everything except timer2 | |
1158 PRR = _BV(PRTWI) | _BV(PRTIM0) | _BV(PRTIM1) | _BV(PRSPI) | _BV(PRUSART0) | _BV(PRADC); | |
1159 | |
1160 setup_tick_counter(); | |
1161 | |
1162 sei(); | |
1163 | |
1164 need_comms = 1; | |
1165 need_measurement = 1; | |
1166 | |
1167 stay_awake = 1; | |
1168 | |
1169 for(;;) | |
1170 { | |
1171 if (button_pressed) | |
1172 { | |
1173 // debounce | |
1174 _delay_ms(200); | |
1175 need_comms = 1; | |
1176 comms_timeout = wake_secs; | |
1177 button_pressed = 0; | |
1178 continue; | |
1179 } | |
1180 | |
1181 if (need_comms) | |
1182 { | |
1183 need_comms = 0; | |
1184 do_comms(); | |
1185 continue; | |
1186 } | |
1187 | |
1188 if (need_measurement) | |
1189 { | |
1190 need_measurement = 0; | |
1191 do_measurement(); | |
1192 do_fridge(); | |
1193 continue; | |
1194 } | |
1195 | |
1196 deep_sleep(); | |
1197 } | |
1198 | |
1199 return 0; /* never reached */ | |
1200 } |